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Exposure in tropical regions (geographic perspective) and developing countries (national perspective), even with global

Heat-related extremes
1.5 °C warming target

warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to > 15% of
global land area becoming exposed to levels of heat stress that affect human health; almost all countries in
Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106
countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%,
50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans,
wheat, and maize could be avoided by constraining global warming to 1.5°C rather than 2°C. With high
emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the
21st century: > 95% of countries will face exposure to health-related heat stress, with India and Brazil ranked
highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire
frequency are projected to increase substantially over 74% global land, with particularly strong effects in the
United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that
account for international variations in the heat-related threats posed by climate change.

1. Introduction regions under 2.0 °C global warming, and increased risks of adverse

agricultural, hydrological, drought-related, and health-related impacts

The Paris Agreement has responded to the risks from climate change
by setting a global collective goal “to hold warming well below 2 de-
grees, with efforts to limit warming to 1.5 degrees” above pre-industrial
averages. Wide ranging, sound scientific analysis of the impact of dif-
ferent levels of warming on the local climate in different regions is
crucial for multi-level decision-making processes. Recently, several
studies have quantitatively analyzed the risks and impacts of different
levels of warming on different sectors (AghaKouchak et al., 2014; Baker
et al., 2018; Cai et al., 2018; Kharin et al., 2018; King and Harrington,
2018; King et al., 2017; Schleussner et al., 2016). For instance, dryland
areas are the most sensitive and vulnerable to global warming, with
~44% more warming likely to occur in dry regions than in humid

in drylands if global warming were to rise from 1.5 °C to 2.0 °C (Huang
et al., 2017). Drought risk increases more significantly in Mediterra-
nean areas and central Europe than in the southwest and Central Great
Plains regions of the U.S. for both 1.5°C and 2.0 °C warming targets,
with the additional 0.5 °C leading to substantially higher risk (Lehner
et al., 2017). In terms of extreme precipitation, Zhang et al. (2018)
reported that 0.5 °C less warming (i.e. 1.5 °C versus 2.0 °C) could lead to
an 18-41% reduction in changes in areal exposures to dangerous ex-
treme precipitation events, and a 36% (22-46%) reduction in changes
in population exposure. To preserve > 10% of the coral reefs world-
wide, it is believed that the global mean temperature change must be
kept below 1.5 °C; under global warming of > 2.0 °C, coral reefs will no
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longer form a prominent part of coastal ecosystems (Frieler et al., 2013;
Jia and Gao, 2017). Many previous studies have made great efforts to
understand the different climatic impacts of the two warming levels at
regional scale. In Australia (King et al., 2017), Europe (King and Karoly,
2017), the Middle East, Africa (Ahmadalipour and Moradkhani, 2018;
Nangombe et al., 2018), and East Asia (Li et al., 2018a, 2018b; Zhou
et al., 2018, 2018a; Wang et al., 2017), the likelihood of experiencing
record-breaking, high-impact extreme climate events is predicted to
increase considerably with 1.5°C and 2.0°C increases in the global
mean temperature.

Higher average temperatures generally result in increased heat
stress (AghaKouchak et al., 2015; Fischer and Knutti, 2015; Sun et al.,
2017; Ahmadalipour and Demirel, 2017). Constraining global warming
to 1.5°C, rather than 2°C, would benefit many regions (Russo et al.,
2019; Zhou et al., 2018; Wang et al., 2017; Xu et al., 2017; Gao et al.,
2019). In Africa, stabilizing global warming below 1.5 °C would lead to
a one-fifth reduction in the occurrence of extreme high-temperature
events (Nangombe et al., 2018). In East Asia, 35%—-46% of the increases
in extreme high-temperature events could be avoided if global warming
is kept beneath 1.5°C (Li et al., 2018a, 2018b). In China, > 6% of the
increase in summer days and 11% of the increase in tropical nights
could be avoided, particularly in north China (Li et al., 2018a, 2018b).
The risk of heatwaves and the exposure to heatwaves could be sig-
nificantly reduced in both developing and highly developed countries if
warming is limited to 1.5 °C instead of 2 °C (Russo et al., 2019). How-
ever, most of these previous studies focused mainly on changes in
heatwaves and other high-temperature events. High heat stress occur-
ring simultaneously with other extreme weather conditions leads to
severe consequences for a range of sectors, exacerbating risks to human
health and economic productivity. For instance, extremely high tem-
peratures in combination with high relative humidity raise human
morbidity and mortality rates (Fischer and Schar, 2010; Matthews
et al., 2017). Concurrence of heatwaves and drought increases the risk
of wildfires (Williams et al., 2013). Extreme heat stress during the crop
reproductive period is detrimental to crop productivity (Deryng et al.,
2014; Teixeira et al., 2013; Yang et al., 2019). Analysis of the change in
the impact of heat stress on multiple sectors under 1.5°C and 2.0°C
warming scenarios is necessary to enable more precise risk assessments.
Furthermore, the effects of heat stress are likely to exhibit regional
variations within a country, owing to spatial heterogeneity of the cli-
mate response, non-uniform population density, and variations in social
conditions. Heavily populated regions are particularly susceptible to the
threat posed to human well-being by extreme heat events (Diffenbaugh
et al., 2007). Quantification of the potential spatial heterogeneity in
climate-related exposure to heat stress at the country level is required to
identify where and to what extent lives and livelihoods will be at risk in
the future, and to facilitate more reasonable mitigation of international
climate change.

Therefore, our study aims to provide a spatially explicit assessment
of changes in heat stress across multiple sectors under 1.5 °C and 2.0 °C
global warmings, using global climate and impact models from the
Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), and
identify national variations in climate-related exposure by combining
hazard impacts with non-climate factors.

2. Materials and methods
2.1. Climate models

In this study, we assessed the impact of the 1.5°C and 2.0°C
warming targets on three sectors: health, agriculture, and wildfires.
Climate datasets were based on projections drawn from the ISI-MIP Fast
Track database. Climate simulations were drawn from five global cli-
mate models: GFDL-ESM2M, HadGEMZ2-ES, IPSLCM5A-LR, MIROC-
ESM-CHEM, and NorESM1-M. The data from these five models are bi-
linearly interpolated into a 0.5° X 0.5° spatial grid, and the models
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Table 1
ISI-MIP models used in the projections, with respective 20-year time slices for
1.5°C and 2.0 °C warmings.

Model 1.5°C 2.0°C

GFDL-ESM2M 2028, 2047 2044, 2063
HadGEM2-ES 2010, 2029 2022, 2041
IPSL-CM5A-LR 2016, 2035 2029, 2048
MIROC-ESM-CHEM 2010, 2029 2022, 2041
NorESM1-M 2022, 2041 2038, 2057

cover temporal ranges from 1981 to 2005 (historical simulations) and
2006 to 2099 [future projections under Representative Concentration
Pathway (RCP) 8.5] (Hempel et al., 2013). There are several reasons
why we selected these five ISI-MIP models. First, the climate model data
are corrected using a trend-preserving statistical bias-correction
method, which adjusts the monthly mean and daily variability of the
simulated climate data to the observations to ensure long-term statis-
tical agreement with the observation-based forcing data. By comparing
global maps of different statistical quantities of uncorrected and bias-
corrected GCM data for the period from 1980 to 1999, Hempel et al.
(2013) demonstrated that this approach performs well when adjusting
the probability distribution over the reference period. Second, the cli-
mate sensitivities of the climate models are retained, and the projected
trends in all other variables are preserved (Hempel et al., 2013). Lastly,
the ISI-MIP data have been used for many impact projections
(Rosenzweig et al., 2014) at different projected levels of global
warming.

We used 20-year time slices for 1.5°C and 2.0 °C global warmings
identified for the RCP 8.5 scenario by Schleussner et al. (2016). Time
slices for the individual GCMs are given in Table 1. The timings of the
1.5°C and 2°C warming scenarios above pre-industrial levels are de-
termined using the 20-year running average global mean surface air
temperature separately for each model. Warming levels are derived
relative to the reference period 1986-2005 [this reference period is
0.6 °C warmer than pre-industrial levels (1850-1900)], and translate to
warmings of 0.9°C and 1.4°C above reference period levels for the
1.5°C and 2 °C limits, respectively. The 1.5 °C and 2 °C warming periods
are then aggregated from 20-year windows centered on years when the
20-year running mean exceeded the respective warming levels. In ad-
dition to the time slices for 1.5 °C and 2.0 °C global warmings, we also
assessed the changes in extreme events at the end of the 21st century
(2080-2099). For each sector, we estimated the related changes and
impacts derived from the simple arithmetic ensemble mean of the five
models. We used Student's t-test to assess the significance of the changes
at the 1.5°C and 2 °C warming levels.

2.2. Health sector

Apparent temperature represents heat stress on the human body by
accounting for the effects of environmental factors in addition to tem-
perature, such as humidity, and by representing the nonlinear nature of
heat stress. We used the health heat index (HHI) as a measure of ap-
parent temperature (AT). This index is calculated from daily tempera-
ture and relative humidity (RH) values obtained from the five climate
models in the ISI-MIP datasets. Computation of HHI involves a refine-
ment of the multiple regression analysis carried out by Rothfusz (1990),
as follows:

HHI =c + ¢, X T+ c3 X T2+ RH X (¢4 + ¢5s X T + ¢ X T?)
+ RH? X (c; + cg X T + ¢ X T?) 1)

c3 = —6.83783 x 1073,
ce = 1.22874 x 1073,
—-1.99 x107% T is

where c¢; = —42.379, c, = 2.04901523,
cs = 10.14333127,  c5 = —0.22475541,
¢; = —0.05481717, cg = 8.5282 x 10™%, ¢q
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temperature in degrees Fahrenheit, and RH is a percentage. However, if
RH > 13% and T is between 80 °F and 112 °F, then HHI is adjusted by
subtracting the following value:

Adjustment = [(13 — RH)/4] x /(17 — IT — 951)/17 (2)

If RH > 85% and T is between 80 °F and 87 °F, the following value
is added to HHI:

Adjustment = [(RH — 85)/10] x [(87 — T)/5] 3
If HHI < 80 °F, then HHI is recalculated as follows:
HHI = 0.5 X [T + 61 + (T — 68) x 1.2 + 0.094 x RH] 4)

Details of the HHI calculation are given on the website of the
National Weather Service - Weather Prediction Center (http://www.
wpc.ncep.noaa.gov/html/heatindex_equation.shtml). In our study, we
calculated the total number of days with an HHI > 105 °F (equivalent
to 40.6 °C, hereafter referred to as AT105F). Above this threshold, heat
conditions become dangerous or extremely dangerous for at-risk groups
(https://www.weather.gov/safety/heat-index) and heat disorders such
as heat stroke and heat exhaustion become likely (NOAA, 1985; Fischer
and Schar, 2010). AT105F is the threshold at which the United States
National Weather Service issues heat advisories, (https://www.
weather.gov/dmx/dssheat). We used the threshold of AT105F for the
entire land area.

2.3. Ecological sector

We used the McArthur Forest Fire Danger Index (FFDI) (Noble et al.,
1980) to measure the degree of wildfire danger. The FFDI was calcu-
lated from the mean temperature, maximum temperature, precipita-
tion, relative humidity, and wind data. FFDI is computed as follows:

(5)

where RH is the relative humidity (%), T is the surface air temperature
(°C), U is the wind speed (km/h), and DF is the drought factor. The
drought factor is based on the soil moisture deficit derived from the
Keech-Byram drought index (KBDI, Keetch and Byram, 1968):

FFDI = 2.0 X e(70.450+0.987 InDF—0.0345RH+0.0338T+0.0234U)

DF=0191 X (K + 104) X (N + D'/[352X (N + DS+ P —1]  (6)

in which N is time since rain (days), P is amount of precipitation (mm).
K is the KBDI, calculated as:
KBDI; = KBDI;_;
N [2032 _ (KBDI([,D _ Pt)] X [0.968e(0.0875T+1A5552)—830)]
(1 + 10.88670.001736&)

()

where t is the time interval of 1day, P, is the precipitation for day t
(mm), and P, is the mean annual precipitation (mm). Then, daily FFDI
values were normalized in each grid cell as described by Jolly et al.
(2015):

x 1073

FFDI; — FFDIy;,

FFDIorm; = ———0— M0
N = REDIyay — FEDlyin

(8)
where FFDIyorm, is the normalized daily FFDI, which ranges from 0 to
100, FFDI; is the daily FFDI for a given grid for day i of year j, and
FFDIyj, and FFDIy,, are the historical daily minimum and maximum
FFDI for the grid. Fire season length was defined as the number of days
when the normalized daily fire danger index was above a threshold
value of 50, following Jolly et al. (2015). We determined fire frequency
using a simulation from the Vegetation Integrative SImulator for Trace
Gases (VISIT), a model for simulating atmosphere—ecosystem biogeo-
chemical interactions. We assessed changes in fire season length and
fire frequency over different terrestrial ecoregions of the world. A map
of terrestrial ecoregions, from Terrestrial Ecoregions of the World
(TEOW) (Olson et al., 2001), was used to represent the biogeographic
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regionalization of the Earth's terrestrial biodiversity, which includes
867 terrestrial ecoregions classified into 14 different biomes such as
forests, grasslands, or deserts (Fig. S1).

2.4. Agricultural sector

Crops are sensitive to heat stress during the reproductive phase,
termed the thermal-sensitive period (TSP) which depends on species
and cultivar. We defined the thermal-sensitive period as the period
from anthesis to maturity, using dates estimated from a global crop
model, PEGASUS provided by ISIMIP (Rosenzweig et al., 2014). When
daily effective temperature (T.y) exceeds a critical temperature
threshold (T.,), damage to crop yields may occur; maximum impact
occurs if Teg exceeds the limit temperature threshold (Ty,). We cal-
culated the daily anthesis heat stress (AHSd) during the reproductive
phase as follows:

0 if Tegr < Ter
Terr — T .
AHSdU = . if Tcr < Teff < Tlim
Tlim - Tcr
1 if Teff > Tlim (9)

where Teg, is defined as the mean of the daily mean and maximum
temperatures for a given grid cell on day i during the reproductive
phase of year j. T, and Ty, for each crop were adapted from Teixeira
et al. (2013), as described in Table 2. AHSd during the thermal-sensitive
period was accumulated and averaged to calculate the anthesis heat
stress (AHS) from

Y (AHSd)

AHS;

L1spy (10)

The value of AHS reflects heat stress events experienced during the
thermal-sensitive period of crop growth. Lysp is the length of the
thermal-sensitive period in year j, and t (1, 2, 3, ..., 1) is the number of
days in the thermal-sensitive period. The AHS was categorized as: very
low (AHS = 0.0), low (AHS < 0.05); medium (0.05 < AHS < 0.15);
high (0.15 < AHS = 0.30); and very high (AHS > 0.30) stress in-
tensity. We calculated the AHS for soybean, maize, and wheat over
their corresponding suitable areas, identified according to the Global
Harvested Area and Yield for 175 Crops dataset (Monfreda et al., 2008).
Grid cells within harvested areas were defined as suitable areas for the
corresponding crops (Fig. S2). We then calculated the normalized
agricultural production damage index (NPDI) to estimate the magni-
tude of agricultural produce losses caused by heat stress. The produc-
tion damage index for year j (PDI)) at each grid cell was calculated as a
product of attainable production P, (crop yield times harvested area)
and AHS;. The PDI; was then aggregated over each country and nor-
malized by the maximum country-aggregated PDI; during the
1981-2099 period, yielding the normalized agricultural production
damage index (NPDI;).

2.5. Exposure

For each sector, we constructed a country-level socio-climatic ex-
posure index to estimate the level of threat faced by different countries
from interactions between the regional climatic changes and relevant
socio-economic factors. We consider integrated exposure to health-

Table 2

Parameters used to calculate anthesis heat stress.
Crop Ter (°C) Tiim (°C)
Maize 35 45
Soybean 35 40
Wheat 27 40
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Table 3
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Input data used to construct indicators for health heat stress, wildfire risk, and crop heat stress.

Indicator

Component

Description

HHI integrated exposure

Health heat index (HHI)
HHI area exposure
HHI population exposure

Number of days with HHI > 40.6°C
Total area with HHI > 40.6°C
Population density within areas experiencing HHI > 40.6°C

Integrated exposure to wildfire

Fire frequency
Fire area exposure
Fire season length

Number of days with fire events
Total area with fire events
The number of days when the normalized daily fire danger index was above a threshold value of 50.

Integrated exposure to crop-heat stress

Anthesis heat stress (AHS)

Area under risk of AHS

High-temperature event occurs when the daily effective temperature (T,y) exceeds a critical temperature
(T.,) threshold within the crop reproductive period
Percentage of harvested area with AHS > 0.05

60°N

30°N

60°N .,:

30°N

X( g
4 v /
() 2080-2099.

120°W 0 120°E

Lf.r/ (b)2.0°C

120°W 0

i |

|-

Temperature change

RH change

Fig. 1. Average changes in temperature and relative humidity (RH) relative to the baseline period (1981-2000). Average changes for (a) 1.5 °C and (b) 2.0 °C global

warming time slices; and (c) the 2080-2099 period (RCP 8.5 scenario).

related heat stress, wild fire, and crop-related heat stress (Table 3).
Exposure to events was estimated following well-established proce-
dures described by Lung et al. (2013). First, for each 20-year time
window, the individual input climatic and socio-economic indicators of
exposure (defined in Table 3) were transformed into a dimensionless
unit by dividing by the maximum values obtained for each indicator
during the baseline period (1981-2000). Then, the dimensionless va-
lues were combined into a standardized, composite (impact) indicator
via geometric aggregation (i.e. the product of weighted indicators) to
achieve the following integrated exposure index (IEI):

1
n n

IEI = N
(1} ' ) an
where {I;, I, ..., I} are the normalized individual input indicators.
During the aggregation procedure, w is the weight for each individual
input indicator; in this study, the individual indicators were given equal

weight.

Populations exposed to extreme events were calculated from the
“Global dataset of gridded population scenarios” (Murakami and
Yamagata, 2016). We used population data from “The marker quanti-
fication of the Shared Socioeconomic Pathway 2: A middle-of-the-road
scenario for the 21st century.” Population data for the 2000s, 2020s,
2030s, and 2090s (Fig. S3) were used to estimate population exposure
during the baseline period (1981-2000), with 1.5 °C and 2.0 °C global
warming targets, and at the end of 21st century. The analysis here fo-
cuses on the SSP2 middle-of-the-road scenario (Fricko et al., 2017),
which predicsts a global population of nine billion by 2100.

128

2.6. Avoided impacts

The proportion of impacts avoided with warming of 1.5°C com-
pared with warming of 2.0 °C was quantified using the function defined
by Li et al. (2018a):

Ezo — Eus

2.0

Al = X 100%

(12)
where Al is the avoided impacts for exposure to different heat-related
indictors. E; 5 and E, o are the changes in the 1.5 °C and 2 °C warming
climate compared with the baseline period (1981-2000).

3. Results
3.1. Changes in health heat stress

Extreme high temperature is one of the greatest global natural ha-
zards to human health. The risk of human illness and mortality in-
creases on hot days, compounded by attendant increases in humidity,
which restricts people's ability to dissipate heat. Many organizations
use the health heat index (HHI) to represent apparent temperature and
thus identify episodes of extreme heat. According to a chart from the
United States National Weather Service that indicates the risk of heat
disorders at different heat-index values, days with HHI > 105°F
(AT105F) are dangerous or extremely dangerous for at-risk groups
(https://www.weather.gov/safety/heat-index). In tropical regions, in-
cluding large parts of India, Africa, and northern South America, the
projected simultaneous increases in daily temperature and relative
humidity promote more frequent occurrences of dangerous heat levels
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Fig. 2. Changes in number of days with HHI > 40.6 °C (105 °F) relative to the
baseline period (1981-2000) for (a) 1.5 °C and (b) 2.0 °C global warming time
slices; and (c) the 2080-2099 period (under the RCP 8.5 scenario). Stippling
indicates locations where the degree of change was statistically significant at
the 95% confidence level.

under all warming scenarios considered (Fig. 1). Increases in the
AT105F are also projected for eastern China, Southeast Asia, Australia,
and the southeastern United States (Fig. 2). In these regions, relative
humidity tends to decrease, but the elevated temperatures nevertheless
cause increased heat stress. Compared with the changes under 1.5°C
warming, global warming at the 2.0 °C limit set by the Paris agreement
results in a further rise in the frequency of danger heat conditions and
expansion of affected areas. The total area affected under 2.0°C
warming is predicted to be about 15.6% larger than that under 1.5°C
warming. AT105F over the affected areas is 1.6 times and 2.3 times
higher under 1.5°C and 2.0 °C than under the current climate. Under
the RCP 8.5 emissions scenario, even larger areas (79.3% of the total
land area covered) - including regions at high latitudes — become
subject to dangerous levels of heat stress by the end of the century
(Fig. 2c). Moreover, the population in tropical regions will be subjected
to dangerous heat conditions more frequently, since the HHI in these
regions will exceed 105 °F for more than one third of the year.

We created an aggregate measure of each nation's overall exposure
to extreme events by taking into consideration the degree of health heat
stress, the area of land affected, and the relative size of the affected
population (Fig. S3). If a country contains a grid cell with
HHI > 105 °F for at least one day during the period of interest, the
country is judged to be exposed to heat stress. The results for the
baseline period (1981-2000) show that India and China experience the
greatest threat from dangerously high levels of heat, owing to their high
population intensity, followed by Brazil and several countries located in
central Africa (Fig. 3). Future projections under 1.5°C and 2.0°C
warming show that the number of countries exposed to heat stress will
increase to 129 and 135 respectively, compared with the 109 heat-
stressed countries in the baseline period. Newly affected regions will
arise in the United States, Indonesia, and Australia. Developing coun-
tries are projected to remain the most vulnerable, with a higher
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exposure index and the least-developed infrastructure. About 26 and 54
countries will be subjected to more than double the HHI integrated heat
stress exposure than that in the baseline period, under 1.5 °C and 2.0 °C
warming, respectively. Current temperature and population trends are
likely to impose significant additional health risks on low income, less
developed countries. By the end of the 21st century, > 95% of countries
will face exposure to health heat stress. The increase in HHI integrated
exposure index will also affect highly developed nations, such as the
United States, which is expected to be under threat from severe heat
stress by 2100. India and Brazil rank highest for HHI integrated ex-
posure, and will experience a more than doubling of heat-related health
stress by the end of the 21st century, owing to increased severity of
natural hazards and ongoing population growth (Fig. 3d).

3.2. Changes in wildfire risk

Wildfire is a vital component of terrestrial ecosystems, shaping the
composition and functioning of terrestrial ecosystems and affecting the
global carbon cycle. In recent years, increased occurrences of extremely
destructive fires have been observed worldwide, triggering substantial
socio-economic costs. Climate and weather, including temperature,
humidity, precipitation, and wind speed, are the most important de-
terminants of forest fire danger. We used the McArthur Forest Fire
Danger Index, which unites these weather variables into a single metric,
to measure the danger of fire and changes in the length of the fire
season for diverse terrestrial ecosystems (Fig. S1, see Materials and
methods section) under different global warming levels. Compared with
the current climate state, the length of the fire season is expected to
increase in the western United States, the Amazon Plain, northern
China, Australia, and Central Asia under both 1.5°C and 2.0 °C global
warming targets (Fig. 4). The additional 0.5 °C warming between 1.5 °C
and 2.0°C appears to contribute mainly to increases in fire season
length in the affected areas. The regional mean fire season length in-
creases by 6.2days and 9.5 days under 1.5°C and 2.0 °C warmings,
relative to the baseline period. Ecological model simulation further
demonstrates that an increase in the frequency of wildfires is likely to
occur in the western United States, Central Asia, and Australia under
the 2.0 °C warming target, while there is no increase in fire frequency
over large regions of the Amazon Plain. A comparison of the distribu-
tion of fire season length across the world's biomes under different
warming states shows that tropical and subtropical forests, tropical and
subtropical grasslands, Mediterranean forests, and desert biomes are
more sensitive to climate fluctuations than other biomes, and exhibit
increased threat from fires with global warming (Fig. 5). The median
fire season length in these six biomes is projected to be longer than
50 days by the end of the 21st century. Large areas of forest are dis-
tributed as tropical and subtropical forest, and Mediterranean forest
biome regions; therefore, increased fire season length with global
warming may promote more frequent wildfires and bring about in-
creases in tree mortality in these areas, with subsequent impact on the
carbon cycle. Except for the tropical and subtropical grasslands, tundra,
deserts and xeric shrublands, most biomes exhibit increases in fire
frequency with global warming, as calculated by the Vegetation In-
tegrative SImulator for Trace Gases (VISIT) model (see Methods).
Biomes experiencing the greatest change in fire frequency are the tro-
pical and subtropical coniferous forests and the Mediterranean forests
(Fig. 5).

We calculated the relative magnitude of integrated exposure to
wildfires at the country level by taking into consideration the biome
area affected by wildfire and the frequency of wildfires. Over the
baseline period, Australia and China have relatively greater exposure to
wildfires than other countries (Fig. 6). The United States, Brazil, India,
and Russia are other major countries threatened by wildfire. Under the
1.5°C and 2.0 °C global warming targets, the exposure index in these
countries increases, showing that wildfires are likely to worsen con-
siderably in these countries. Moreover, almost all European countries
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Fig. 3. Integrated exposure to dangerous heat stress during different global warming periods. Country-level average HHI-integrated exposure index values (di-
mensionless) for (a) the baseline period 1981-2000, (b) the 1.5 °C warming target, (c) the 2.0 °C warming target, and (d) the 2080-2099 RCP 8.5 period. Stippling in
(b, ¢, d) indicates locations where the degree of change during different global warming periods, relative to the baseline period (a), was statistically significant at the
95% confidence level.

are predicted to face worsening fire risk with a 2.0 °C increase in global
mean temperature. Under the RCP 8.5 scenario, fire risk substantially
increases by the end of the 21st century over 74% of global land, in
particular in the United States, Canada, Brazil, China, Australia, and
Russia (Fig. 6d). The increase in the number of extremely destructive
fires will pose a severe threat to ecological systems, possibly resulting in
the extinction of tree species and disrupting the global biology cycle.

(a) 1.5°C (Fire season length)

(b) 2.0°C (Fire season length)

3.3. Changes in anthesis heat stress

Heat stress poses an important threat to agricultural production and
global food security. Crops are especially vulnerable to high tempera-
ture episodes during their reproductive period. We calculated heat
stress during the reproductive phase of development — anthesis heat
stress (AHS) - to assess the potential damage to crop growth under
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Fig. 4. Changes in fire season length and wildfire frequency. Changes in the average length of the fire season (days) under (a) 1.5 °C warming, (b) 2.0 °C warming,
and (c) during the 2080-2099 period, relative to the baseline period 1981-2000. Changes in the frequency of wildfires under (d) 1.5 °C warming, (e) 2.0 °C warming,
and (f) during the 2080-2099 period, relative to the baseline period 1981-2000. Stippling indicates locations where the degree of change was statistically significant
at the 95% confidence level.
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Fig. 7. Normalized agricultural production damage index during different global warming levels. Country-level normalized agricultural production damage index for
(a) soybean, (e) maize, and (i) wheat during the baseline period (1981-2000); (b) soybean, (f) maize, and (j) wheat for the 1.5 °C global warming target; (c) soybean,
(g) maize, and (k) wheat for the 2.0 °C global warming target; and (d) soybean, (h) maize, and (1) wheat for the 2080-2099 (RCP 8.5) period. Stippling in (b-d, f-h,
j-D indicates locations where the degree of change during different global warming periods, relative to the baseline period (a, €, i), was statistically significant at the

95% confidence level.

different levels of global warming. Wheat shows high AHS levels even
in the baseline climate, particularly in South Asia, southern North
America, sub-Saharan Africa, and southeastern China: 19.8%, 31.6%,
37.3%, and 69.3% of all grids suitable for wheat (Fig. S2) are affected
by high or very high (AHS index > 0.15) stress intensity during the
baseline period, 1.5 °C warming, 2.0 °C warming, and at the end of 21st
century under RCP 8.5 (Fig. S4). Significant increases in AHS for wheat
under 1.5°C and 2.0 °C global warmings occur in the central United
States, northwestern South Asia, and northern China. Areas with high
AHS levels are projected to cover the Mediterranean region and extend
into Central Asia under 2.0 °C global warming. By the end of the 21st
century, almost all suitable cropping areas are likely to experience an
increased number of high temperature episodes, resulting in very high
AHS intensity. By contrast, maize, and soybean exhibit low AHS in-
tensity in the baseline climate. Soybean and maize areas affected by
high AHS intensity remain unaltered under 1.5 °C and 2.0 °C warmings,
owing to their higher critical temperature thresholds (Table 2). With
global warming, the main heat stress hot-spots for soybean and maize
are predicted to occur in northwestern India and the southern United
States, where AHS intensity is projected to increase to high or very high
levels at certain grid locations. Consistent with the patterns of AHS
shown in Fig. S4, Fig. 7 shows that crops in Iran, Pakistan, India, the
United States, and countries in northern sub-Saharan Africa are more
likely to be affected by high temperature episodes. In general, countries
in tropical regions experience greater levels of exposure than other
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regions during the baseline period. With global warming, increasing
numbers of countries become subject to more frequent, more severe
high-temperature episodes, threatening agricultural production and
food security.

Fig. S5 shows the projected changes in the production of soybean,
maize, and wheat based on simulations by the PEGASU model, which
predicts crop yields in response to heat stress. Under 1.5°C global
warming, the production of all crops is expected to decrease in tropical
regions but increase in many high-latitude countries, especially Russia
and European countries. Warmer, wetter climate states in high-latitude
regions are conducive to crop development and result in more areas
becoming suitable for agriculture, leading to increased production. In
our study, we did not take CO,-fertilization into consideration; the re-
sults obtained by Schleussner et al. (2016) suggested that the positive
effects of CO,-fertilization may counteract the negative effects of cli-
mate change, resulting in an overall increase in yields for soy and wheat
and a slightly smaller reduction for maize under 1.5°C and 2.0°C
warmings. Moreover, the increase in crop production at high latitudes
under 1.5°C warming (for example, wheat production in Russia and
Mediterranean countries) may vanish at the end of the 21st century if
climate warming is not limited. The regional average wheat production
is predicted to decrease by 20% by the end of the 21st century, relative
to the baseline period. More marked downward trends in crop pro-
duction with increases in global warming can be seen in tropical
countries, particularly in Africa, southern Asia, and South America,



Q. Sun, et al.

Environment International 128 (2019) 125-136

(e) Baseline (maize)

¥ [ N . .

R R TS B B B A B T BEN-T Vo W VR R~ )
S S To o N T oM lh 8RR s D
=) I =) S S = S =) S

Fig. 8. Integrated exposure to crop heat stress during different global warming periods. Country-level crop-related exposure index for: (a) soybean, (e) maize, and (i)
wheat during the baseline period (1981-2000); (b) soybean, (f) maize, and (j) wheat for the 1.5 °C global warming target; (c) soybean, (g) maize, and (k) wheat for
the 2.0 °C global warming target; and (d) soybean, (h) maize, and (1) wheat for the 2080-2099 (RCP 8.5) period. Stippling in (b—d, f-h, j-1) indicates locations where
the degree of change during different global warming periods, relative to the baseline period (a, e, i), was statistically significant at the 95% confidence level.

which are generally consistent with results presented by Challinor et al.
(2014) and Asseng et al. (2015). At higher warming levels, the critical
temperatures can be exceeded during the growing season, as shown in
Fig. 7, resulting in diminished yields (Schauberger et al., 2017).

The normalized agricultural production damage index over the
tropical regions is larger than that in other regions for all crops. Owing
to the different critical temperatures for crops, soy and maize showed a
lower normalized damage index with 1.5°C and 2.0 °C warmings, but
production of wheat suffered greater heat stress, with a higher nor-
malized agricultural production damage index predicted for all climate
scenarios. Decreased wheat production is predicted for 76, 90, and 115
countries under 1.5 °C warming, 2.0 °C warming, and in the 2080-2099
RCP 8.5 period. Increased normalized agricultural production damage
index for wheat is projected for 106 countries. Under the RCP 8.5
scenario, almost all counties are predicted to suffer higher production
damage and reductions in wheat production by the end of the 21st
century, except Mongolia, Norway, and Sweden (Fig. S5, Fig. 7). It also
should be noted that the normalized damage to soybean production is
predicted to increase significantly by the end of the 21st century,
especially in Russia, China, and the United States, driven mainly by the
expansion of affected areas in these countries (Figs. 7, 8). Teixeira et al.
(2013) also predict a large relative increase in agricultural production
damage for soybean between the baseline period and the end of the 21st
century. The relatively large increase in the effect of heat stress on
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soybean crops may be because only a small area is at risk under the
baseline climate condition but, under future climate warming, there is a
large increase in both the area affected by heat stress and the intensity
of the heat stress.

3.4. Global warming of 2.0 °C: avoided impacts of the additional 0.5 °C
increase in mean global temperature

Fig. 9 shows the proportion of impacts that are avoided under 1.5 °C
warming as opposed to 2.0°C warming. Globally, about 38%, 50%,
46%, 36%, and 48% of the increased exposure to health threats, wild-
fire, crop-related heat stress for soybeans, wheat, and maize could be
avoided if global warming is to be restricted to 1.5 °C rather than 2°C
(based on the median values of the avoided impacts). In terms of ex-
posure to health threats, constraining global warming to 1.5 °C instead
of 2°C would allow countries in tropical regions, including India and
countries in Africa, to avoid many of the adverse effects of heat on
health (Fig. 9a). Canada, Russia, Turkey, India, and countries in the
Amazon basin and Mediterranean are relatively sensitive to the effects
of climate warming on wildfires (Fig. 9b), which may have a significant
impact on forests in these regions. Half a degree less warming (i.e. the
1.5 °C target) would help these countries avoid > 50% of the increased
exposure to wildfire predicted to occur under 2°C warming. Major
food-producing countries, including the United States, China, and India,
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Fig. 9. Proportion of heat-related exposures avoided through 1.5 °C warming instead of 2 °C warming. (a) Health, (b) wildfire, (c) soybean, (d) wheat, and (e) maize
sectors. Stippling indicates locations where the difference between the two levels was statistically significant at the 95% confidence level.

are vulnerable to enhanced crop heat stress associated with the addi-
tional 0.5°C warming. With 2.0°C global warming, food crises will
continue to occur, and acute hunger is likely to intensify in certain food-
deficient counties, such as in the Middle East and Africa. Larger impacts
of heat stress are avoided for soybean and maize. It should be noted that
there is a visual amplification of minor absolute changes for regions
with low present-day exposure, in particular in the high northern lati-
tudes.

4. Discussion and conclusions

We assessed changes in heat-related extremes for health, wildfire,
and agricultural sectors under 1.5 °C and 2 °C global warmings. Relative
magnitudes of climate and societal exposures were evaluated at the
country level to identify hot-spot countries that respond the most to
climate change. The results show that, even in a climate held to the
1.5°C target, increases in the frequency and intensity of heat events
should be expected. Under global warming, the increased daily tem-
perature and associated changes to other weather variables will lead to
more frequent, intense, and widespread heat-related extremes. First,
heat-stress metrics that integrate the effects of rising humidity indicate
that the risk of life-threatening heatwaves will increase (Im et al., 2017;
Matthews et al., 2017). The additional 0.5 °C increase in mean global
warming associated with the 2.0 °C target (compared with the 1.5°C
target) makes a significant difference to the extent of the area and the
population exposure to extreme events. In a world with 1.5°C global
warming, 129 countries will be exposed to heat stress, and that number
will rise to 135 with 2 °C global warming. Considering both the popu-
lation and the areas exposed to heat stress, about 26 countries will be
subjected to more than double the health-related heat integrated ex-
posure under 1.5 °C global warming relative to the baseline period, and
this increases to 54 countries under 2 °C warming. This will present a
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major challenge to developing countries, such as India, China, and
Brazil. Over global land, about 38% of the increase health-related heat
exposure can be avoided with 1.5 °C warming versus 2 °C warming.

In terms of the wildfire sector, previous studies have suggested that
temporal inequality in the annual distribution of precipitation will in-
crease in many regions with global warming, along with increases in
the frequency of dry spells and dry days (Sillmann et al., 2013; Singh
et al., 2014; Sun et al., 2018). The concurrence of hot, dry, and windy
conditions is conducive to wildfires (Jolly et al., 2015). The fire danger
index combines temperature, precipitation, and wind and confirms the
lengthening of the fire season under global warming across almost all of
the major vegetated regions in the world. Persistent lengthening of the
fire season will likely lead to more frequent destruction of ecosystems
by fire and an increase in the area burned, shortening the fire return
intervals and threatening biodiversity. The additional 0.5 °C warming at
2.0 °C contributes mainly to increases in the duration of the fire season
in the affected areas. The average length of the fire season over global
land is projected to last 3.3 days longer with 2.0 °C warming than with
1.5°C warming. A clear increase in the frequency of wildfires is pro-
jected to occur in the western United States, Canada, Mediterranean
countries, Central Asia, and Australia under 2.0 °C warming; the biomes
experiencing the greatest change in fire frequency are tropical and
subtropical coniferous forests and Mediterranean forests. Previous stu-
dies (Moritz et al., 2012; Romero-Lankao et al., 2014) together with the
IPCC Special Report on the impacts of global warming of 1.5 °C above
pre-industrial levels (Hoegh-Guldberg et al., 2018) also indicate that
the frequency of wildfires is projected to increase in over 37.8% of the
global land area, with the risk of wildfire under 2 °C warming becoming
particularly high in Canada, the United States, and Mediterranean
countries. Globally, 0.5°C less warming (i.e. the 1.5°C target) would
help avoid > 50% of the increased exposure to wildfire predicted to
occur under 2 °C warming. By the end of the 21st century, the length of
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the fire season and the frequency of wildfires are projected to increase
substantially.

In terms of the agricultural sector, crops, particularly wheat, are
likely to experience a greater number of high-temperature episodes
during their reproductive period, posing a threat to crop production
(Gao et al., 2014). The area suffering from high-intensity heat stress
during the wheat reproductive phase is predicted to increase by 37.3%
with 2.0 °C warming, covering the Mediterranean region and stretching
into Central Asia. Moreover, the agricultural benefits of global warming
in high-latitude regions may reduce or even disappear altogether with
2.0 °C warming. If specific climate-change mitigation targets and cli-
mate policies are not followed, and the RCP 8.5 emissions trajectory
becomes reality, most regions of the world will be threatened by high-
impact heat extremes by the end of the 21st century.

To identify hot-spot regions vulnerable to global warming, we
compared the relative impact of heat-related extremes in the health,
wildfire, and agricultural sectors across the world. It is not surprising
that developing countries are likely to experience greater exposure to
more serious heat extremes across multiple sectors than developed
countries, a finding that is in agreement with recent studies. King and
Harrington (2018) find that the poorest people would be subjected to
the greatest changes in climate with a shift from 1.5 °C global warming
to 2°C global warming, and so propose greater support for climate
adaptation to prevent poverty growth. Russo et al. (2019) suggest that
exposure to heat hazards increases most in countries at lower levels of
development, owing to larger increases in both the population growth
and the risk of heatwave. Our predictions show that poorer countries
are the most vulnerable, facing greater mortality, decreased food se-
curity, and increased forest fires, owing to their large populations and
insufficient economic carrying capacity to resist the high risks asso-
ciated with climate extremes. For instance, India is a large agricultural
country with high population density and rich forests; it exports agri-
cultural products to many nations. Our findings indicate that India will
suffer multiple negative effects from climate change, including an in-
crease in heat-related mortality, a marked decline in agricultural pro-
duction, and an increased risk of forest fires, which not only threatens
India's own security and income (Carleton, 2017) but also potentially
affects food security and the carbon cycle across the world. Moreover, it
should be noted that certain developed countries will also be affected
adversely by severe heat stress under constantly rising temperatures: for
example, health-related heat exposure in the United States and the risk
of forest fires in Russia both increase under 2.0 °C global warming.
Thus, according to both the avoided impacts index and previous studies
that took different pathways for future societal development into ac-
count (King and Harrington, 2018; Russo et al., 2019), although the
degree of response to global warming differs in different regions, both
developing and developed countries will benefit greatly if global
warming is stabilized below 1.5 °C.

It should be noted that our assessment of the changes in heat-related
extremes at different levels of global warming is mainly based on cli-
mate model simulations, assisted by global impact models. Although
uncertainty is associated with the projections, this study finds a con-
sistent increase in risk with global warming, and so supports appeals for
immediate mitigation measures to be implemented. International var-
iations in the threat posed by climate change require that measurement
indices account for the potential heterogeneity in socio-climatic factors.

Data availability

All data supporting the findings of this study are freely available
from the following locations:

ISI-MIP Fast Track database: https://esg.pik-potsdam.de/search/
isimip-ft.

Global dataset of gridded population scenarios: http://www.cger.
nies.go.jp/gcp/population-and-gdp.html.

Terrestrial Ecoregions of the World: https://www.worldwildlife.
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org/publications/terrestrial-ecoregions-of-the-world
Global Harvested Area and Yield for 175 Crops dataset: http://
www.earthstat.org/data-download/.
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Table S1. Variables used in present study. Check marks indicate variables used in calculation of

sector indices.

Variables Units Health  Ecological  Agricultural
Near surface air mean temperature < V4 V4 V4
Near surface relative humidity % v v

Near surface air maximum temperature < v
Precipitation kgm?s! v

Near surface wind speed ms’! N4
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Fig. S1. Map of terrestrial ecoregions. Text in the legend describes the abbreviations used.
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Fig. S2. Crop areas for (a) soybean, (b) maize, and (c) wheat. The maps show grids

corresponding to crop harvests. The metadata are from the “Global Harvested Area and Yield for

175 Crops” dataset.
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Fig. S3. Population maps for (a) 2000s, (b) 2020s, (c) 2030s, and (d) 2090s.
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Fig. S4. Anthesis heat stress (AHS) index under different levels of global warming for areas
suited to different crops. Suitable crop areas were obtained from the “Global Harvested Area and
Yield for 175 Crops” dataset (Monfreda et al., 2008). AHS values in areas suitable for: (a)
soybean, (b) maize, and (c) wheat during the baseline period (1981-2000); (d) soybean, (e)
maize, and (f) wheat for the 1.5<C global warming target; (g) soybean, (h) maize, and (i) wheat
for the 2.0<C global warming target; and (j) soybean, (k) maize, and (l) wheat for the 2080-2099

(RCP 8.5) period.
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Fig. S5. Relative change (%) in crop production under different climate states relative to the
baseline period (1981-2000). Changes in the country-level aggregate production for: (a) soybean,
(d) maize, and (g) wheat for the 1.5<C global warming target; (b) soybean, (e) maize, and (h)
wheat for the 2.0<C global warming target; and (c) soybean, (f) maize, and (i) wheat for the

2080-2099 (RCP 8.5) period.
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