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a b s t r a c t

Spatiotemporal patterns of global air pollution are of great significance to environmental management
and public health. Studies have revealed the changes in the concentration of dust and sea-salt removed
fine particulate matter (PM2.5) pollution (DSRPP). However, the spatial characteristics of DSRPP on
multiple scales remain unclear. Therefore, we combined the latest global estimates of the PM2.5 dataset
and landscape metrics to investigate the spatiotemporal patterns of DSRPP across global and national
scales from 2000 to 2016. We found that the area of DSRPP increased from 1,146,800 km2 to
3,929,800 km2 between 2000 and 2016, a factor of 2.43. The DSRPP became more structurally frag-
mented and geometrically complex, with the patch density and the landscape shape index of DSRPP
increasing by 133.3% and 24.5%, respectively. More than 90% of the DSRPP were concentrated in the
middle income countries, especially in India and China. Specifically, the DSRPP in China exhibited a
sprawling process before 2007 but a dissipating process after 2007 under the great efforts of the Chinese
government in mitigating air pollution, while DSRPP in India remained an aggregation trend. The po-
tential threat to public health posed by the DSRPP increased over time. Populations living in the areas
with the DSRPP increased by 141.2% from 2000 to 2016 due to the deterioration of air quality and de-
mographic change. Thus, we suggest that effective actions should be taken to control the main sources of
anthropogenic emissions and mitigate the negative effects of DSRPP on public health in the future,
especially in the middle income countries such as China and India.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Dust and sea-salt removed fine particulate matter (PM2.5)
pollution (DSRPP) is defined as the presence of PM2.5 components
without dust and sea-salt in the atmosphere at a sufficient con-
centration, for a sufficient time, and under circumstances such that
it interferes with the comfort, health, or welfare of people or the
environment (ISO, 1994; Kaiser, 2005). DSRPP includes such con-
stituents as sulfate, nitrate, ammonium, and carbonaceous aerosols
(van Donkelaar et al., 2016). Investigating the DSRPP is of great
significance for public health and sustainable development. First,
Earth Surface Processes and
injiekouwai Street, Beijing,
DSRPP can be used to approximate anthropogenic PM2.5 pollution,
which is highly relevant to human activities (Evans et al., 2013).
Furthermore, DSRPP has notable effects on human health (Wu et al.,
2013; Burnett et al., 2014). Hence, DSRPP is directly related to
United Nations’ Sustainable Development Goal (SDG), i.e., SDG3
(good health and well-being) and SDG11 (sustainable cities and
communities) (WHO, 2016).

Several studies investigated the impacts of DSRPP on public
health. At the global scale, Evans et al. (2013) found that DSRPP was
attributable to 8.0%, 12.8% and 9.4% for the cardiopulmonary dis-
ease, lung cancer and ischemic heart disease, respectively. Lelieveld
et al. (2015) assessed the premature mortality attributable to PM2.5
from seven emission sources in 2010 and found that more than 80%
of the global total deaths were related to the anthropogenic sour-
ces. At the continental scale, Lacey et al. (2017) estimated that
13,000 premature deaths were related to anthropogenic emissions
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in Africa, and the largest contribution came from residential ac-
tivity. At the national scale, Crouse et al. (2016) simulated the risk
related to PM2.5 in south Canada, and the results indicated the
components of DSRPP (e.g. sulfate, organic mass and ammonia)
have higher toxicity than dust. Therefore, understanding the
spatiotemporal patterns of DSRPP is important in making decisions
to mitigate pollutant emissions and secure public health.

Researchers have studied the changes in DSRPP concentrations
on multiple scales. At the global scale, Philip et al. (2014) analyzed
the dynamics of DSRPP concentrations between 2004 and 2008 by
combining the remotely sensed aerosol optical depth (AOD) and
the Goddard Earth Observation System chemical transport model
(GEOS-chem). At the national scale, Crouse et al. (2016) analyzed
the changes in DSRPP concentrations in southern Canada from
2001 to 2010 by combining the AOD and GEOS-chemmodel. At the
local scale, Cheng et al. (2016) analyzed DSRPP concentrations in
forty-five global megacities for the year 2013. However, most
studies mainly focused on changes in DSRPP concentrations, while
changes in the spatiotemporal patterns of DSRPP have not yet been
adequately evaluated.

Landscape metrics can be used to delineate the spatiotemporal
patterns of DSRPP. Landscape metrics quantify the spatial charac-
teristics of landscape elements and have been used widely in
geographical and ecological research (Turner and Gardner, 2015).
Previous researchers have used landscape metrics to quantify the
spatiotemporal patterns of forest cover, impervious surfaces, and
green space (Remmel and Csillag, 2003; Buyantuyev et al., 2010;
Qian et al., 2015), and uncovered their relationship with the urban
heat island and water quality (Lee et al., 2009; Zhou et al., 2011;
Weber et al., 2014). Recent researchers also used landscape metrics
to analyze the spatiotemporal changes in PM2.5 pollution (Liu et al.,
2017a), and found that the spatial shape of PM2.5 pollution is closely
related to the urban form (Borrego et al., 2006), industrial emission
sources (Li et al., 2016), agricultural emission sources (Zhang et al.,
2017a), and wind speed change (Zhang et al., 2016). Therefore, the
spatiotemporal patterns of DSRPP based on the landscape metrics
can enrich our understanding of the relationship between the
pattern and the process of DSRPP.

The most recently published dataset of Global Estimates of Fine
Particulate Matter (GEFPM) is an important data source for inves-
tigating the spatiotemporal patterns of DSRPP on multiple scales
(van Donkelaar et al., 2016). First, the dataset is highly accurate
because it was further calibrated using the GEOS-chem model and
in situ monitoring data. Second, the dataset provides annually
updated information for the period from 1998 to 2016. Third, the
dataset provides all components PM2.5 concentrations, as well as
the dust and sea-salt removed PM2.5 concentrations. Therefore, the
GEFPM dataset enables the specific analysis of the spatiotemporal
patterns of DSRPP to be made. This dataset has been successfully
used in relevant studies in recent years (Han et al., 2017a; Li et al.,
2017; Cao et al., 2018). Against this background, this study is the
first-ever attempt to conduct a comprehensive evaluation of
spatiotemporal patterns of DSRPP using rich data across space and
time based on a multi-scale landscape analysis.

In this context, our objective was to analyze the spatiotemporal
patterns of global DSRPP between 2000 and 2016, and further
discuss the drivers and potential health impacts. We first quantified
the DSRPP spatiotemporal patterns at the global and national scales
between 2000 and 2016 using landscape metrics. Then, we
explored the relationship between income per capita and DSRPP at
the national scale. Finally, we discussed the potential threats to
public health posed by DSRPP. Our results are helpful for setting
policy for pollution control and understanding the influence of
global air pollution on public health.
2. Data

Dust and sea-salt removed PM2.5 concentrations were obtained
from the GEFPM dataset (V4.GL.02) published by the Dalhousie
University’s Atmospheric Composition Analysis Group (http://fizz.
phys.dal.ca/~atmos/; last accessed on December 4, 2018).
Different from a previous version of this dataset (V3.01) which used
a three-year average to reduce noise, this new dataset contains
gridded records of global annual average PM2.5 concentrations as
well as dust and sea-salt removed PM2.5 concentrations from 1998
to 2016 at a spatial resolution of 0.1� (approximately 10 km)
without the sliding average method (van Donkelaar et al., 2015,
2016). In this study, we used the annual average dust and sea-salt
removed PM2.5 concentrations from 2000 to 2016 (Appendix
Figure A1). In addition, although the dataset is calibrated by
ground-based measurements of PM2.5, most of the measured data
were from the United States and Europe during 2008e2013. Under
this background, we further validated the data using monitoring
data in China and India. The correlation analysis showed the GEFPM
dataset highly corresponded with monitoring data in India and
China, which indicated the accuracy of this dataset could support
our analysis (Appendix Figure A2).

The population data used in this study were obtained from the
History Database of the Global Environment (HYDE3.2) published
by the Netherlands Environmental Assessment Agency (ftp://
ftp.pbl.nl/hyde; last accessed on December 4, 2018). This dataset
contains the gridded population at a global scale between 2000 and
2016, with a spatial resolution of 0.083� (approximately 10 km)
(Goldewijk et al., 2016). The country-level income data and income
group classification were obtained from the World Bank (2018)
(http://data.worldbank.org/indicator/; last accessed on December
4, 2018). To avoid the interannual inconsistent caused by income
group change over time, and given that our study is for the period
of 2000e2016, we used the income group classification in 2016
following previous global-scale studies (WHO, 2018; UN, 2019).
National administrative boundaries were generated from the Na-
tional Geographic Information Public Service Platform of China
published in 2010 (http://www.tianditu.com/service/info.html?
sid¼1005&type¼info; last accessed on December 4, 2018).

3. Methods

3.1. Determining the DSRPP areas

The DSRPP areas were designated as areas in which the annual
average dust and sea-salt removed PM2.5 concentrations were
higher than the interim target one concentration (IT-1, 35 mg/m3)
according to the air quality guidelines set by the World Health
Organization (WHO). We used IT-1 because it represented an
achievable air quality standard for every country worldwide (WHO,
2005; Appendix Table A1). Based on the above definition, we
divided the globe into DSRPP areas and non-DSRPP areas using
ArcGIS 10.2 (https://www.arcgis.com/index.html).

3.2. Quantifying the spatiotemporal patterns of DSRPP

We used the landscape metrics to characterize the spatiotem-
poral patterns of DSRPP. A patch is a basic unit in landscape anal-
ysis, which was defined as an area differing in appearance from its
surroundings (Turner and Gardner, 2015). In terms of DSRPP, a
DSRPP patch refers to a continuous DSRPP area. The landscape
metrics of the DSRPP can illustrate the extent, fragmentation and
connectivity of DSRPP patches.

Although dozens of landscape metrics are available, most of
them are highly correlated (Turner, 2015). Following previous
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studies (Wu et al., 2011; Liu et al., 2017a), we chose five metrics to
depict the major spatial characteristics of DSRPP. In specific, two
types of most commonly used landscape metrics were applied to
quantify the major spatial characteristics of DSRPP (Appendix
Table A2). We used three landscape metrics to examine the basic
spatial characteristics of DSRPP, including the number of patches
(NP), mean patch size (MPS), and the largest patch size (LPS). NP is
the number of patches in the study area, and MPS is the mean area
of all the DSRPP patches, whereas LPS is the area of the largest
DSRPP patch. In addition, we selected two landscape metrics,
including the patch density (PD) and landscape shape index (LSI), to
evaluate the structural fragmentation and geometric complexity of
DSRPP. PD examines the degree of fragmentation of DSRPP patches,
and LSI measures their shape complexity. All of these landscape
metrics were calculated using FRAGSTATS 4.2 (McGarigal, 2015)
(http://www.umass.edu/landeco/research/fragstats/fragstats.
html).

Changes in landscape metrics could reveal the complex process
of aggregation and fragmentation of the DSRPP patches. For
example, during a process of air pollution formation, the NP of
DSRPP will increase as the newly polluted patches emerge, and
then declinewhen the patches of polluted areas further expand and
aggregate. Meanwhile, the MPS and LPS of DSRPP will show an
increasing trend, and the PD and LSI of DSRPPwill show an inverted
U shape. Otherwise, if the air quality gets improved, the polluted
patches will become more fragmented at first and dissipate later,
the MPS and LPS of DSRPP will decline, and the PD of DSRPP will
consequently show an inverted U shape (Fig. 1).

3.3. Analyzing the spatiotemporal patterns of DSRPP on multiple
scales

We analyzed the spatiotemporal patterns of DSRPP at the global
Fig. 1. Evolution of DSRPP and correspo
and national scales. At the national scale, we mainly reported the
results in China and India, because their areas of DSRPP were much
larger than those in other countries. We used the linear regression
(Peng et al., 2016) and Mann-Kendall test (WMO, 1991) to depict
the long-term trend and significance of DSRPP from 2000 to 2016.
Detailed information about the Mann-Kendall test can be found in
Appendix Method A.1.

4. Results

4.1. DSRPP dynamics between 2000 and 2016 at the global scale

Overall, the global DSRPP area showed a significant increasing
trend between 2000 and 2016, with the linear regression and the
Mann-Kendall test passed the significance level of 0.01. The DSRPP
area increased by 2,783,000 km2 between 2000 and 2016, almost
2.5 times compared with that in 2000 (Fig. 2a, Table 1). In terms of
annual dynamics, the total area of DSRPP increased from 2000 to
2008, declined slightly from 2009 to 2011, then rose again from
2012 to 2016. The total area of DSRPP reached 3,929,800 km2 in
2016, accounting for 2.6% of the global land area (Fig. 2a; Table 1).
Most increase in the area of DSRPP was concentrated in medium-
income countries, which accounted for more than 90% of the
growth of DSRPP area. Specifically, DSRPP area in the upper-
medium and lower medium-income countries increased by
849,300 km2 and 1,721,500 km2, respectively, from 2000 to 2016. In
addition, DSRPP area in the low income countries increased by
212,200 km2, accounting 7.6% of the total growth (Fig. 2b).

The DSRPP became more structurally fragmented and geomet-
rically complex over time. The NP, MPS, and LPS of DSRPP increased
by 133.3%, 48.4%, and 220.5% respectively. Additionally, the PD of
DSRPP increased from 0.20/million km2 in 2000 to 0.48/million
km2 in 2016, and the LSI of DSRPP increased from 5.15 in 2000 to
nding trends in landscape metrics.
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Fig. 2. Dynamics of DSRPP at the global scale.
Note: (a) Spatial changes in DSRPP between 2000 and 2016. (b) Areal changes in DSRPP from 2000 to 2016 among different income groups. The 2016 income group classification
from World Bank is used in this analysis.

Table 1
Areal changes in DSRPP between 2000 and 2016.

Scale Region Area in 2000 (thousand km2) Area in 2016 (thousand km2) Change (thousand km2) Rate of change

Global World 1,146.8 3,929.8 2,783.0 2.43

Income group High 0.0 0.0 0.0 e

Upper medium 484.1 1333.4 849.3 1.75
Lower medium 608.3 2329.8 1,721.5 2.83
Low 54.4 266.6 212.2 3.90

National China 406.1 1,077.8 671.7 1.65
India 490.6 1,657.6 1,167.0 2.38
Thailand 75.6 217.6 142.0 1.88
Bangladesh 70.9 127.7 56.8 0.80
Pakistan 44.4 159.2 114.8 2.59
Nepal 29.0 76.2 47.2 1.63

Note: The 2016 income group classification fromWorld Bank is used in this analysis. For China, data do not include those from Hong Kong, China; Macao, China; and Taiwan,
China for statistical purposes.
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6.41 in 2016 (Fig. 3, Appendix Table A3). In terms of annual dy-
namics, the PD fluctuated from 2000 to 2013. During this period,
the changes in DSRPP areas mainly dominated by patches in South
Asia and East Asia. After the year of 2014, PD increased suddenly
according to some newly added DSRPP patches in Africa and
Southeast Asia. Meanwhile, the LSI of DSRPP varied from5 to 7 from
2000 to 2016 with a moderate growth trend (Fig. 3, Appendix
Figure A3).



Fig. 3. Spatial patterns of DSRPP from 2000 to 2016 at the global scale.
Note: NP, number of patches; MPS, mean patch size; LPS, largest patch size; PD, patch density; LSI, landscape shape index.
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4.2. DSRPP dynamics between 2000 and 2016 at the national scale

At the national scale, most of the DSRPP areas were concen-
trated in a few countries. The top six countries with the largest
annual average DSRPP area are China, India, Thailand, Bangladesh,
Pakistan and Nepal, which all belong to the medium and low in-
come countries. The total annual average area of DSRPP in the six
countries accounted for about 95% of the total DSRPP area. The
DSRPP area in China and Indiaweremuch larger than those in other
countries, with an annual average value of 1,335,394 km2 and
1,048,482 km2. Correspondingly, the total areal changes in DSRPP in
China and India between 2000 and 2016 reached 1,838,700 km2,
accounted for 66.1% of the total increase of DSRPP area.
4.2.1. DSRPP dynamics in China
DSRPP area in China increased by 671,700 km2 from 2000 to

2016, accounted 1.65 times of DSRPP area in 2000. Newly added
DSRPP area mainly located in the eastern region and northeastern
region of China (Fig. 4a). In terms of the overall areal change, the
DSRPP area in China didn’t show a significant changing trend based
on linear regression or Mann-Kendall test. Specifically, the DSRPP
area in China increased from the year of 2000 and reached the
largest area of 1,842,600 km2 in 2007, which is about 3.5 times
larger than the original area in 2000. After the year of 2007, DSRPP
area experienced a declining trend, reached 1,077,800 km2 in 2016
(Fig. 4c).

The DSRPP in China also became structurally fragmented and
geometrically complex over time. The NP, MPS and LSI increased by
68.7%, 57.3% and 133.1% respectively. Along with the deterioration
of air quality, existing DSRPP patches further expanded in extent
and new patches of the DSRPP also appeared. These changes
resulted in a 69.0% increase in the PD and a 21.3% increase in LSI of
in China. In terms of annual variations, the patches of the DSRPP in
China exhibited an aggregating process before 2007 and a frag-
menting process after that time. Between 2000 and 2007, the MPS
and LPS of the DSRPP increased by 282.1% and 419.4%, respectively.
Meanwhile, the NP of the DSRPP declined from 45 in 2000 to 19 in
2007. After the year of 2007, the sizes of the DSRPP patches shrank
with the values of MPS and LPS decreasing by 58.8% and 55.1%,
while the NP of the DSRPP increased from 19 in 2007 to 27 in 2016
(Fig. 5; Appendix Figure A4).
4.2.2. DSRPP dynamics in India
DSRPP area in India increased by 1,167,000 km2 from 2000 to

2016, approximately 2.38 times of that in 2000. The DSRPP areas
expanded from the northern region to the central region (Fig. 4b).
From the perspective of overall areal change, the areas of DSRPP in
India showed an increasing trend at the significant level of 0.01 for
both of the linear regression and the Mann-Kendall test, with some
fluctuation from 2008 to 2012. In 2016, the areas of DSRPP in India
reached 1,657,600 km2, which is the largest among all the countries
(Fig. 4c). Contrary to the recent declining trend of DSRPP in China,
DSRPP area kept an increasing trend, and India ranked the first in
the area of DSRPP in 2016 globally.

The DSRPP in India becamemore compact in structure andmore
complex in shape from 2000 to 2016. The NP of DSRPP decreased
from 7 to 6, while the MPS and LPS increased by 294.1% and 237.4%.
Some small DSRPP patches expanded and aggregated to a large
DSRPP patch along with the deterioration of air quality, which lead
to a small decrease in the PD of DSRPP. Meanwhile, the LSI of DSRPP
increased by 17.2%, following the expansion of the DSRPP area. In
terms of annual variations, the patches of the DSRPP in India
showed two aggregating processes. The first aggregating period is
between 2000 and 2008. In this period, the sizes of the DSRPP
patches in India grew substantially with the MPS and LPS of the
DSRPP patches increasing by 236.3% and 188.9%, respectively.
Meanwhile, the NP of the DSRPP patches decreased from 13 in 2005
to 6 in 2008. In the second aggregating period of 2012e2016, the
DSRPP patches showed a similar expanding process which is rep-
resented by increases in MPS and LPS. Consistently, the PD of the
DSRPP patches during this period also increased from 9 in 2012 to 6
in 2016 (Fig. 5; Appendix Figure A5).
5. Discussion

5.1. Landscape metrics provides a new perspective to understanding
the spatiotemporal patterns of air pollution

Landscape metrics were widely used to quantify the spatio-
temporal characteristics of landscape elements (Turner and
Gardner, 2015; Liu et al., 2017a). In this research, we used the
landscape metrics to illustrate the spatiotemporal patterns of
DSRPP at the global and regional scale. Our result showed that



Fig. 4. Dynamics of DSRPP in China and India.
Note: (a) Spatial changes in DSRPP between 2000 and 2016 in China. (b) Spatial changes in DSRPP between 2000 and 2016 in India. (c) Areal changes in DSRPP from 2000 to 2016.
For China, data do not include those from Hong Kong, China; Macao, China; and Taiwan, China for statistical purposes.
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landscape metrics could identify the critical transitional stage of air
quality, which provided an effective perspective to understand the
evolutionary processes of DSRPP. For example, DSRPP in China
deteriorated gradually from 2000 to 2007. During this period, the
PD in China showed an inverted U shape, while the MPS and LPS
kept growing. These changes in landscape metrics indicated that
there were an expansion and aggregation of the DSRPP patches.
After 2007, the area of DSRPP in China shrank in size, and the air
quality got improved gradually. This transition of the spatial pat-
terns of the DSRPP patches was in line with the decline in
production-related PM2.5 emissions in China. From 2007 to 2010,
the production-related PM2.5 emissions decreased from 9.2 million
tonnes to 8.0 million tonnes (Guan et al., 2014). Besides, the pro-
motion of large scale flue gas desulfurization also led to a reduction
in air pollution (Wang et al., 2014). Between 2013 and 2016, the
patches of DSRPP in China further shrank in size and some polluted
patches disappeared. Therefore, the values of MPS and LPS
decreased and the values of NP and PD increased. These changes
also corresponded with the emissions reduction related to “China’s
Air Pollution Prevention and Control Action Plan” launched in 2013
(Huang et al., 2018). The plan proposes to improve air quality by
reducing emissions from power plants, industrial boilers, motor
vehicles and fugitive dust, with a target of lowering PM2.5 con-
centration in 2017 in key regions (e.g., the Beijing-Tianjin-Hebei
region) by 25% compared with 2013 (The State Council of China,
2013; Wang et al., 2017). Overall, the reduction in DSRPP is a
strong evidence to indicate the great efforts in China to deal with its
air pollution issues.
5.2. The relationship between areal changes in DSRPP and
economic growth

The DSRPP can be influenced directly by themeteorological field
and emissions of pollutants (Kaiser, 2005; West et al., 2016). The
meteorological field mainly influences the transport and evolution
of PM2.5, and it is determined by multiple climatic factors such as
wind speed, relative humidity and temperature (Wang et al., 2016;
Yin et al., 2016). The emissions of pollutants are the sources of
PM2.5, and more closely related to anthropogenic activities such as
economic activities, policy regulation and advances in technology
(Gong et al., 2012; Shen et al., 2017).

The economic growth could influence the DSRPP indirectly in
several different aspects. On the one hand, economic development
accompanied with emissions of pollutants from multiple sources,
such as industrial production, agricultural activities, and transport
(Lelieveld et al., 2015; Gately et al., 2017; Zhang et al., 2017b). On
the other hand, income level was also closely related to policy
regulation and advances in technology, which affect the control of
emission during the production processes (Guan et al., 2014; Fan
et al., 2016). Following the hypothesis of the environmental Kuz-
nets curve (EKC), environmental quality tends to get worse as
economic growth occurs until the average income reaches a certain



Fig. 5. Spatial patterns of DSRPP from 2000 to 2016 in China and India.
Note: NP, number of patches; MPS, mean patch size; LPS, largest patch size; PD, patch density; LSI, landscape shape index. For China, data do not include those from Hong Kong,
China; Macao, China; and Taiwan, China for statistical purposes.
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point with the improvement in technology and policy (Shafik,
1994). According to this framework, we compared the dynamics
of DSRPP area among the four groups of countries with different
income levels. The growth speed of DSRPP area decreased with the
increase in income level. The change rates of DSRPP area from 2000
to 2016 were 3.90, 2.83 and 1.75 for low, lower medium and upper
medium-income countries, whereas the DSRPP almost disappeared
in high-income countries (Table 1). This roughly corresponded with
the EKC framework.

Furthermore, we explored the relationship between economic
development and the areas of DSRPP at the national scale using the
element fixed effect regression model (Cheng et al., 2003; Liu et al.,
2017b). The samples were collected from 12 countries, in which the
areas of DSRPP were larger than zero for at least 10 years over the
last. All of the 12 countries belonged to middle and low income
countries. The proportion of DSRPP area to the national area and
the income per capita at the national scale showed an inverse U
shape. The proportion of DSRPP area in a country will increase
along with the income per capita at first, and then decline after the
income per capita is higher than approximately $5,000 per capita
(in 2018 US dollars), which is in line with the hypothesis of EKC
(Fig. 6). For the countries with an income per capita lower than the
$5,000 threshold (e.g. India, Pakistan, Bangladesh and Nepal), their
DSRPP areas were positively associated with income per capita. On
the contrary, for countries which experienced fast economic
development (e.g. China and Thailand), their DSRPP area exhibit a
decreasing trend after their income per capita was greater than $
5,000 per capita.

Our findings were also consistent with previous studies. For
example, Selden and Song (1994) found that the national emissions
per capita of air pollutants (i.e. SO2, NOX and CO) exhibited inverse
U relationship with GDP per capita based on the data from 130
countries during the period of 1973e1984. Panayotou (2001) also
found that ambient SO2 level first rose, and then fell with the in-
crease in income per capita at the national scale based on the data
from 30 developed and developing countries during the period of



Fig. 6. Relationship between the per capita income and proportion of DSRPP area to
the land area.
Note: The regression was conducted using the fixed effects model in Eviews 8. The ci
and N refer to the intercepts for different countries and the number of samples. The
shaded areas and the size of the plot refer to the 95% uncertainty intervals of
regression and the extents of the DSRPP area. For China, data do not include those from
Hong Kong, China; Macao, China; and Taiwan, China for statistical purposes.
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1982e1994. Therewere some differences in the turning point of the
EKC between our research and previous studies. For our study, the
turning point was estimated to be around $5,000 in 2018, and the
estimate in a previous study was approximately $5,000 in 1984
(approximately $12,000 in 2018). The decrease in the turning point
might result from the late-mover advantage suggested by previous
studies, as the developing countries can learn the knowledge and
technology from developed countries and avoid taking detours
(Hoppe, 2000).
5.3. Mitigation of DSRPP is urgently needed to ensure the public
health

DSRPP threatens human health, and people living in the DSRPP
areas have higher levels of health risks. A number of studies have
found that living in environments with high PM2.5 concentrations
can have various effects on human health (Kaiser, 2005; Cohen
et al., 2017). Here, we used the population living in the DSRPP
areas to investigate the potential human health threat posed by
DSRPP, by overlaying population data and the DSRPP distribution.

The population living in DSRPP areas rapidly increased from
812.21 million in 2000 to 1,959.35 million in 2016, with a growth
rate of 141.2%. At the national scale, China and India had the largest
growth in the population living in DSRPP areas, accounting for
46.95% and 37.73% of the total increase at the global scale. Specif-
ically, the population living in DSRPP in China and India increased
by 367.38 million and 544.80 million, respectively, induced by the
combined effects of air quality deterioration and demographic
change (Appendix Figure A6). Consequently, the potential threat to
public health posed by DSRPP at the global scale worsened over
time.

Therefore, we argue that effective actions are required to miti-
gate DSRPP and protect public health in the future. Anthropogenic
PM2.5 emissions should be effectively reduced by upgrading pro-
duction facilities and adjusting the energy structure (Guan et al.,
2014; Huang et al., 2015). In particular, strict anthropogenic PM2.5
emission standards should be implemented in countries with large
DSRPP areas (e.g., India, China, and Thailand) (Zhao et al., 2008; Fan
et al., 2016). Moreover, effective countermeasures are urgently
needed to mitigate the effects of DSRPP on public health in the
future. For example, healthcare in diseases associated with DSRPP
should be enhanced, especially in countries with a large population
living in DSRPP areas (e.g., India, China) (Guan et al., 2016; West
et al., 2016).
5.4. Uncertainty analysis

In this research, we illustrated the spatiotemporal dynamics of
global DSRPP from 2000 to 2016 comprehensively by combing the
landscape metrics and long term global PM2.5 concentration data-
set. There are still some uncertainties in this study. First, our results
are sensitive to the criteria defining the “polluted” region. In this
study, we only examined the spatiotemporal patterns of DSRPP
under the threshold of IT-1 (35 mg/m3) without considering other
standards. However, our findings regarding the spatiotemporal
patterns of global air pollution are still notable because the IT-1 is a
widely accepted threshold for determining pollution at the global
scale (WHO et al., 2005; Liu et al., 2017a; Han et al., 2017b).

Second, for some regions where there is a large amount of non-
anthropogenic biomass burning, the use of dust and sea-salt
removed PM2.5 as a proxy for anthropogenic PM2.5 is not appro-
priate. However, this factor does not affect our major findings
because the PM2.5 pollution coming from biomass burning
accounted for a small portion of PM2.5 polluted area at the global
scale (Philip et al., 2014). In addition, we did not consider the
transport paths of PM2.5 pollution as most of the PM2.5 pollution is
produced by domestic emissions (Zhang et al., 2017b).

Third, the population living in the DSRPP areas were used to
roughly estimate the potential health threat posed by DSRPP. The
estimates of the actual health burden attributable to DSRPP are
more complex, determined by the PM2.5 concentration, de-
mographic factors and death rates of diseases (Cohen et al., 2017).
In other words, although the area of global DSRPP increased by a
factor of 2.43 from 2000 to 2016, the threats of DSRPP to public
health at local scales can also decrease significantly in recent years.
For example, the deaths related to PM2.5 in China showed a
decreasing trend after 2013 (Huang et al., 2018).
5.5. Application and future perspectives

Our study adapted landscape metrics to illustrate the spatio-
temporal dynamics of DSRPP. Although we only used a fixed
threshold and annual data in this research, this method and
framework can also be adjusted to fulfill other research requests.
For example, with more detailed data, landscape metrics can be
powerful tools to depict the evolution process of PM2.5 pollution at
multiple spatial scales (e.g. regional and prefectural) and temporal
scales (e.g. daily and monthly).

In the future, in situ investigations and remotely sensed data
should be integrated to further quantify the spatiotemporal pat-
terns of global air pollution. In addition, the mechanisms of the
changes in DSRPP can be investigated using other methods such as
atmospheric transport and dispersion models (Stein et al., 2015),
emission inventory (Klimont et al., 2017) and chemical transport
model (Philip et al., 2014).
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6. Conclusions

The global DSRPP area rapidly increased from 1,146,800 km2 in
2000 to 3,929,800 km2 in 2016, with more than 90% concentrated
in middle-income countries. The DSRPP became more structurally
fragmented and geometrically complex during this period, with the
increases in patch density and landscape shape index. Landscape
metrics provided powerful tools to identify the hotspots and critical
stages of air pollution at the national and regional scales. Several
critical stages of DSRPP in China and India were revealed by land-
scape metrics effectively. Under the combined effects of air quality
deterioration and demographic change, the potential threat to
public health posed by air pollution increased over time, we urge
that effective actions are required tomitigate the negative effects of
DSRPP on public health in the future.
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