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CROP ECONOMICS, PRODUCTION,AND MANAGEMENT

A Spatialization Method for Grain Yield Statistical Data:
A Study on Winter Wheat of Shandong Province, China

Guofeng Xiao, Xiufang Zhu,* Chenyao Hou, Ying Liu, and Kun Xu

ABSTRACT

Grain yield data based on administrative divisions (counties, cit-
ies, etc.) for statistics lack spatial information, which can be effec-
tively solved by grain yield spatialization. This paper proposes
a spatialization method for grain yield based on the Moderate
Resolution Imaging Spectroradiometer (MODIS) Normalized
Difference Vegetation Index (NDVI) time series data. The
method was tested by taking winter wheat (Z7iticum aestivum
L.) in Shandong Province in China as an example. First, the
classification and regression tree (CART) algorithm was trained
to extract the winter wheat planting pixels in 2016. The average
NDVTIs of the different growing stages (returning green, jointing,
heading, and milk ripening) were calculated from the MODIS
NDVI time series data. The relationship between winter wheat
yield and NDVI variables (including single-phase NDVI and
the average NDVI of different growing stages) was analyzed by
univariate and multiple linear regressions. The NDVI variable
with the highest correlation to winter wheat yield and the mini-
mum root mean square error of the fitting equation were chosen
as input to build the spatialization model. The results show that
the classification accuracy of winter wheat estimated with the
confusion matrix was 82.51% and that the average precision of
planting acreage compared with county-level statistical data was
87.64%. The average relative error of yield spatialization at the
county level was 22.71%. The method developed in this paper
is easy to operate and popularize, and it can provide a technical
reference for producing high-resolution crop yield distribution
maps of long time series through spatialization.

Core ldeas

¢ . Dividing the study area into subregions and classifying them im-
proved winter wheat classification accuracy.

* . Single-phase Normalized Difference Vegetation Indices acquired
on 6 March, 23 April, 25 May, and 29 June were the best variables
for building the wheat yield spatialization model.

¢ . The extraction accuracy of winter wheat area greatly impacted the
spatialization of yield.

* . The proposed model can provide a technical reference for
producing high-resolution crop yield distribution maps.
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GRICULTURE IS fundamental for human society.
AAgricultural production statistics are of paramount
importance for societal, economic, agricultural, and

policy concerns (Carletto et al., 2015). Therefore, governments
are committed to collecting data on agricultural production to
understand agricultural development and assist in formulating
agricultural development policies. However, agricultural pro-
duction statistics are reported on a geopolitical basis, such as by
country, province, or city and are generally available in tabular
form, which cannot provide fine-scale distribution information
within geopolitical units (You and Wood, 2006). Fine-scale dis-
tribution information on agricultural production is valuable for
awide range of applications, such as field management, crop yield
gaps, and agricultural insurance (Lobell, 2013). The spatializa-
tion of tabular crop production statistics from geopolitical units
to subregions or even individual pixels is an effective method for
producing fine-scale distribution information on crop produc-
tion within geopolitical units (You and Wood, 2006).

The concept of ‘spatialization’ was proposed in the early
1990s (Tobler et al., 1995, 1997). It uses certain methods
or parameters to build a model, then the model is applied to
describe the distribution of data over a certain time and space
scale. Over the past few decades, the spatialization of social and
economic statistics has become a hot topic in many disciplines.
The methods used for spatializing statistical data can be gener-
ally divided into four categories: spatial interpolation models
(Huffman et al., 2007; Vicente-Serrano et al., 2003; Stahl et
al., 2006), spatial allocation models based on land use and land
cover data (Matlock et al., 1996; Yang et al., 2009), multisource
data fusion models (Sutton et al., 2001; Wu et al., 2006; Azar et
al., 2013), and remote sensing inversion models (Elvidge etal,
1997; Ghosh et al., 2010; Li et al., 2013).

Currently, the spatialization of statistical data mainly focuses
on population data (Liu et al., 2008; Fisher and Langford, 1995;
Mennis, 2003) and gross domestic product data (Yue et al.,
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Fig. |. Study area location. (a) Distribution of Subregion | (SRI, plains) and Subregion 2 (SR2, hilly region). (b) Distribution map of the

winter wheat sample.

2014; Elvidge et al., 2001; Henderson et al., 2003). There is little
research on the spatialization of agricultural economic statistics,
because agricultural production activities are affected by many
factors, including geographical location, climatic characteris-
tics, and soil hydrology; therefore, it is difficult to spatialize.
Of those that have considered the spatialization of agricultural
economic statistics, researchers have paid more attention to the
spatialization of crop planting areas (You and Wood, 2005; You
etal.,, 2009; Khan et al.,, 2010; Monfreda et al., 2008) and the
spatialization of agricultural production inputs (Potter et al.,
2010; Zhu et al., 2012); the spatialization of grain yield statisti-
cal data is rare. On the basis of a 1-km resolution population
density map, Liu and Li (2012) built a regression model using
the population density as the dependent variable and the grain
yield per unit of arable land as the independent variable. The
model was used to produce a grain output map for China, with
a I-km spatial resolution, in 2000. On the basis of this 1-km
resolution land cover map, Ji et al. (2015) developed the relation-
ship between the acreages of different farmland types and grain
yield to spatialize the grain yield of China in 2005. Their study
focused on the total grain yield rather than the yield of a given
crop type. However, a spatial distribution map of the yield of
different crop types is more useful than a spatial distribution
map of the total grain yield for research on agriculture activities.
Remote sensing technology has become one of the meth-
ods used for studying regional spatial patterns of crops and
their dynamic changes due to its large-scale, high efficiency,
and rapidity (Lei et al., 2012). Moderate Resolution Imaging
Spectroradiometer (MODIS) NDVT s a very popular data
source for crop distribution maps and crop yield estimations
for large-scale studies (Fritz et al., 2008; Potgicter ct al., 2013).

Lots of studies have explored the empirical relationship between
NDVI and crop yield (Mkhabela et al., 2005; Huang et al.,
2014; Mashaba et al., 2017). However, different studies have
used different NDVI variables, such as original NDVT, average
or accumulated NDVT over the growth period, average or accu-
mulated NDVT over key growing stages, etc.

This paper takes winter wheat in Shandong Province as an
example, analyzes the relationship between NDVI variables
with winter wheat yield, and chooses the best NDVI variables
to build a spatialization model of winter wheat yield and make
ayield distribution map of winter wheat with 250-m resolution.
The remote sensing data used in this paper have the advantages
of global coverage, free access, high spatial resolution (250 m),
and a long coverage time (2000-2019). The method developed
in this paper is easy to operate and popularize, and it can pro-
vide a technical reference for producing high-resolution (up to
the 250-m pixel level) crop yield distribution maps of long time
series through spatialization. The resulting high-resolution crop
yield distribution map of long time series can help us to analyze
the temporal and spatial changes of grain yield, and provide
basic data for the agricultural insurance industry, agricultural
planting systems, and agricultural disaster assessment.

STUDY AREA AND DATA
Study Area

Shandong Province is located on the east coast of China and
the lower reaches of the Yellow River, ranging from 34°22.9" to
38°24.01'N and 114°47.5" to 122°42.3’E (Fig, 1). It has aland area
of 155,800 km?, 17 cities, and 137 counties. Shandong Province
belongs to the warm temperate monsoon climate type. Its rainfall
is concentrated within a short period; rain and heat occur within
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Table |. Data details and sources.

Spatial Time
Data name Year resolution resolution Source Application
Moderate Resolution Imaging 2016 250 m 16 d USGSt Extracting the planting area and
Spectroradiometer normalized building the yield spatialization model
difference vegetation index for winter wheat
Digital Elevation Model 90 m - USGS Subdividing the study area

Winter wheat planting area statistics in 2016 - -

Shandong Province

Winter wheat yield statistics in 2016 - -

Shandong Province

Landsat-8 Operational Land Imager 2016 30m -

Gaofen-| 2016 16 m -
Gaofen-2 2016 4m -
Google Earth imagery 2016 - -

Shandong Provincial
Bureau of Statistics}
Shandong Provincial
Bureau of Statistics

Verifying the accuracy of extracted
winter wheat area

Targeted data for spatialization

USGS Selection of winter wheat samples
Geospatial data cloud§
Geospatial data cloud

Selection of winter wheat samples
Selection of winter wheat samples

Google Earth software,
Google, Santa Clara, CA,

Selection of winter wheat samples

T US Geological Survey (USGS) (http://glovis.usgs.gov/, accessed 10 May 2019).

I http://xxgk.stats-sd.gov.cn/ (accessed 10 May 2019)
§ http://www.gscloud.cn/ (accessed 10 May 2019).

the same period. The frost-free period is increasing from the
northeast coast to the southwest. Its light resources are abundant
and the heat conditions can meet the needs of two crops per year.
Shandong is one of the major food production provinces in China.
The grain crops are divided into summer grain and autumn

grain. The summer grain is mainly winter wheat; the autumn
grain is mainly corn (Zea mays L.), potato (Solanum tuberosum
L.), soybean [Glycine max (L.) Merr.], rice (Oryza sativa L.), mil-
let [Setaria italica (L.) P. Beauv.], sorghum [Sorghum bicolor (L.)
Moench.], and small grains. Among these, wheat, corn, and potato
are the three major food crops in Shandong.

Datasets

The data used in this paper include: (i) the MODIS-NDVI
MOD13QI) time-series data, (ii) the Digital Elevation Model,
iii) winter wheat planting area statistics for Shandong Province,

—~

iv) winter wheat yield statistics for Shandong Province, and
v) Landsat-8 Operational Land Imager, Gaofen (GF) 1, GF-2,
and Google Earth imagery. The details of the data, including the

—_

sources, are shown in Table 1.

METHODS

The spatialization process of the winter wheat yield, based on
MODIS-NDVI time series data, is shown in Fig. 2. It mainly
includes: (i) preprocessing of MODIS-NDVT time series data,
the division of the research area and examination of winter
wheat statistical data on planting arca and yield; (ii) selection
of winter wheat samples, based on high-resolution remote
sensing data, and extracting winter wheat planting area, based
on the classification and regression tree (CART) algorithm;
(iii) calculation of the average NDVI during different winter
wheat growing stages and analysis of the relationship between
the NDVT variables and winter wheat yield; (iv) building the
spatial model for winter wheat yield spatialization; and (v) veri-
fying the accuracy of winter wheat yield spatialization.

Data Preprocessing

First, MRT software (https://modis.gsfc.nasa.gov/tools/,
accessed 14 May 2019) was used to convert the MODIS-NDVI
time-series data in 2016 to Albers equal-area projections, with
a resampling resolution of 250 m. The Savitzky-Golay filter

method developed by Chen et al. (2004) was used to eliminate
noise and smooth the MODIS-NDVT time series data. The
MODIS-NDVI data during the winter wheat growing season
in 2016 in Shandong Province were extracted for classification.
Based on the phenological period information for winter wheat
in Shandong Province, the average NDVT of the different grow-
ing stages (returning green, jointing, heading, and milk ripening
stages) were calculated.

Considering the topographic characteristics of Shandong
Province and the complexity of winter wheat planting plots,
the study area was divided into a plain—simple landform region
[referred to as Subregion (SR) 1] and a plain—complex hilly
landform region (SR2) based on the Digital Elevation Model
and administrative boundary data(Fig. 1a). The training and
validation samples of winter wheat were selected by referring
to high-resolution remote sensing data (Landsat-8 Operational
Land Imager, GF-1, GF-2, etc.) (Fig. 1b). We examined the com-
pleteness and regularity of the data on winter wheat acreage and
yield. Spatial linking of the statistical data and vector boundary
data ensured there were statistical data on the winter wheat area
and yield in each region.

Classification with the CART Algorithm

The CART algorithm is a decision tree construction algo-
rithm first proposed by Breiman et al. (1984). It is based on
two recursive division segmentation techniques that divide the
sample set into two subsets, giving two branches to each nonleaf
node of the decision tree. The decision tree generated by the
CART algorithm is a simple binary tree and thus there can only
be a ‘yes’ or ‘no’ answer to every step.

The CART algorithm uses the Gini coefficient (Gini index)
in economics as the criterion for selecting the best test variables.
The selection criterion is that each subnode must achieve the
highest purity or, in other words, all the elements of the sub-
nodes must belong to the same category. Assuming the dataset
S, there are # class categories {C}, C,,..., Cn} in total, and each
class is a sample subset C; = S; (1 <7 < n). |S] is the number of
samples in the sample set, |Ci| is the number of subsets Ci in
C,|/|S| is the probability that the sample
in the sample set belongs to class C;, and the Gini coefhicient of

the sample set S, o, =

dataset § can be expressed as:
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Based on high-resolution remote sensing data and Google
Earth imagery, training samples were selected for the two subre-
gions. Based on the MODIS-NDVT data of the growing season
of winter wheat, the CART classification method was used to
establish the decision tree automatically for winter wheat plant-
ing area identification, and the winter wheat planting areas in
SR1 and SR2 were extracted. The classification results of the
two subregions were merged into the distribution map of winter
wheat in Shandong Province.

The classified winter wheat planting area of each county was
evaluated by using the county boundary map and was compared
with the statistical data on the winter wheat planting area. The
accuracy of the classified planting area (the absolute value of
the difference between the statistical acreage and the classified
acreage divided by the statistical acreage) in each county was
calculated; counties with a classification accuracy less than 60%
were selected. The decision tree was re-established for the images
of the selected counties to improve the classification accuracy.

Selection of Regression Factors

Existing studies have shown that the winter wheat yield
is closely related to the NDVT during the growing season
(Mkhabela et al., 2011; Hansen and Schjoerring, 2003).
Therefore, we extracted eight 16-d MODIS-NDVI data periods
during the winter wheat growing season in Shandong Province,
the starting dates of which were 6 March 6, 22 March, 7 April,
23 April, 9 May, 25 May, 10 June, and 26 June. The abbrevia-
tion NDVIgy ay Fepresents the 16-d MODIS-NDVI during 9 to
24 May. By combining the winter wheat phenology information

returning green stage (the mean of NDVI, (. and NDVI,,, ),
jointing stage (the mean of NDVI,,  and NDVI, Ap 1), heading
stage (the mean of NDVIgy - and NDVL,q, . ), and the milk
ripening stage (the mean of DV ojune and DVLgun - The
eight single-phase NDVTs and the NDVTs of the four phenologi-
cal stages in the winter wheat growing season were aggregated at
county level as input variables.

In SPSS software (version 25.0, IBM Corp., Armonk, NY),
univariate linear regression was established between each NDVI
variable and the winter wheat yield and the correlation coef-
ficient was determined and tested for significance. Multivariate
linear regressions between NDVI variables and winter wheat
yield were established from the independent variable to deter-
mine the number of input variables and correlation coefficients.
The equations for the univariate linear regression and multiple
regression are as follows:

Y =aX,+b, (2]

Y=8,+BX +..+BX,, (3]

where Y represents the winter wheat yield, X, represents the
NDVI of the different phases, and 4, 4, and #o.... B, are con-
stants. Finally, the correlation coeflicient between each input
variable and the winter wheat yield, the regression’s standard-
ized residual histogram, and the minimum root mean square
error (RMSE) of the fitting equation were analyzed. The NDVI
variable with the highest correlation coefficient for winter wheat
yield and the minimum RMSE of the fitting equation were
selected as the spatialization factors of winter wheat yield.
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Fig. 3. Distribution map of winter wheat planting area.

Building the Spatial Model

According to the analysis results in the Selection of
Regression Factors section above, the NDVT of the four single-
phase stages were chosen as the optimal input variables for
building the spatialization model of winter wheat yield (details
on the analyses are given in the Spatialization Model Factors
section). For a given county, the spatial model is as follows:

4 NDVI,
Y;:YXZ("—ani); [4]
= > NDVI,
= ’
4
a=n/¥n 5
i=1

where y’ represents the spatialized yield of winter wheat pixel
. . J . . . .

j (j=1,...n), n is the number of pixels classified as winter wheat
in the given county, ¥ represents the statistical winter wheat
yield of the given county, NDVI,, represents the NDVI of the
M stage, i (= 1,2, 3, 4) represents the four single-phase stages,

Z":ND VI, ; represents the sum of the NDVIs of all winter

vjvlllcat pixels in a given county in the it™ stage, p, represents the
correlation coefficient between the NDVT and the statistical
yield in the /M stage, and @, represents the correlation coeffi-
cient normalization result for the /M stage.

Validation of the Accuracy

In this paper, validation of the accuracy included two steps:
verifying the planting area classification and verifying the
yield spatialization results. The verification of the planting area

classification was performed by the standard confusion matrix
method, in which 595 validation samples of winter wheat were
randomly selected in Shandong Province (Fig. 1) for calculating
the confusion matrix. In total, 403 samples were located in SR1
and 192 samples are in SR2. The verification method for the
spatialization results usually made a comparison between the
fine-scale data (such as the township level) and the spatialized
results from the data at a coarser scale (county level). For this
study, there were no official statistical winter wheat yield data at
township level in Shandong Province; therefore, we used indi-
rect methods to verify the accuracy of our spatial model. The
indirect validation method involved making 250-m resolution
spatial distribution map of the winter wheat yield based on our
spatialization model with winter wheat yield at the municipal
level. The total winter wheat yield at county level was calculated
from the distribution map and was compared with statistical
data on the total yield of winter wheat at the county level.

RESULTS AND DISCUSSION

Winter Wheat Distribution

The winter wheat distribution map of Shandong Province is
shown in Fig. 3. Winter wheat in Shandong Province is mainly
distributed in the western plain area, the southwest plain area,
and the flat terrain in the middle. The plains area, in which the
main industry is agriculture and other primary industries, is
main area for winter wheat planting. The terrain in the central
hilly region is complex, the land is fragmented, and the natural
conditions are poor, all of which are not conducive to the culti-
vation of winter wheat. The coastal areas are economically devel-
oped regions, where the main industries are in the secondary
and tertiary sectors and the winter wheat acreage is small.
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Table 2. Verification of the accuracy of winter wheat planting area.

Winter Confusion matrix Statistical data
Region wheat samples  Producer accuracy User accuracy Overall accuracy Average accuracy
n %
Subregion 11 403 88.63 77.84 86.03 92.88
Subregion 2 192 74.69 82.24 78.34 81.28
Subregion | + Subregion 2 595 83.26 7891 82.51 87.64

T Subregion |, plains region; Subregion 2, hilly region.

Two methods were used to verify the classification accuracy of
the winter wheat planting area. One was the confusion matrix;
the other was a comparison with statistical data (Table 2). It can
be seen from Table 1 that the overall accuracy of classification
in SR1 was higher than that in SR2. The omission error in SR1
is higher than that in SR2 and the commission error in SR2 is
higher than that in SR1. The overall accuracy of identifying the
winter wheat planting area in Shandong Province was 82.51%, the
producer accuracy was 83.26%, and the user accuracy was 78.91%.
In addition, in a comparison with the actual winter wheat plant-
ing area (the statistics), we found that the average accuracy of rec-
ognizing winter wheat planting area in SR1, SR2, and the whole
province was 92.88, 81.28, and 87.64%, respectively.

Spatialization Model Factors

The correlation between different NDV 1 variables and winter
wheat yield was obtained by univariate linear regression and
multiple linear regression analysis (Table 3). From Table 3, we
can see that in the univariate linear regression analysis, when the
independent variable was a single-phase NDVT, the correlation
between the NDVI,, = and winter wheat yield was the highest
(R?=0.901, P < 0.05). When the independent variable was the
phenophase NDVT, the NDVI of the jointing stage had the high-
est correlation with winter wheat yield (R? = 0.900, P < 0.05).

In the multiple linear regression analysis, when the input
of the independent variables was the single-phase NDVI vari-
ables, the variables for the linear regression were selected as:
NDVIg 1. NDVIBAPr, NDVIZSMay’ and NDVIZGJune' When
the input of the independent variables was the phenophase

Table 3. Regression model correlation.

NDVT variables, the variables of the linear regression were:
returning green stage NDVT, jointing stage NDVI, heading
stage NDVT, and milk ripening stage NDVT; the NDVTs of
all four stages were used to build the linear regression model.
When the input variables included both single-phase and phe-
nophase NDVI variables, the variables in the linear regression
were selected as: NDVI (. NDVIZ}Apr’ NDVIZSMay’ and
milk ripening stage NDVTI. All three multiple linear regression
models passed the significance test (R* = 0.903, P < 0.05).

To further select the variables involved in the spatialization
of winter wheat yield, we analyzed the residuals of the univari-
ate linear regression and the multiple linear regression; the
regressions’ standardized residual histogram is shown in Fig, 4,
alongside the RMSE of the fitting equation. In the standard-
ization residual histogram of the regression, the normal curve
is a criterion for judging whether the standardized residual
histogram conforms to a normal distribution. From Fig. 4, we
can see that in the linear regression, the standardized residual
histograms of both linear regression equations are in accordance
with normal distribution. The SD of the standardized residual
error histogram of the multiple linear regression was smaller and
more consistent with the normal distribution, indicating that
the multiple linear regression model is superior to the univariate
linear regression model. In a comparison of the equation fitting
effects of three multiple linear regressions, the RMSE of the fit-
ted equation was calculated separately. When the independent
variable was a single-phase NDVT variable, the RMSE was the
smallest. The single-phase NDVT variables were: NDVI (-,
NDVIBApr’ NDVIZSMay’ and NDVIZGjunc' Therefore, we

Methods Independent} R2 Adjusted R2
Univariate linear Single-phase NDVlgmar 0.864** 0.863
regression NDVly3oMar 0.894** 0.894
NDVlyppr 0.90** 0.900
NDVIy3pp, 0.897%* 0.897
NDVlgp,, 0.888%* 0.887
NDVI5 50y 0.872%* 0.871
NDVI 10june 0.856%* 0.855
NDVI26June 0.861%** 0.860
Phenological stages NDVI, 0.885%* 0.884
NDVI, 0.900%* 0.899
NDVI, ¢ 0.883** 0.882
NDVI_. .. 0.861%** 0.860
Multiplg linear Single-phase NDVlgy,pe NDVI23Apr‘ NDVIZSMay NDVI26June 0.903** 0.900
regression Phenological stages NDVI_, NDVI, NDVI, ,NDVI 0.903** 0.900
Single-phase and phenological stages NDVlgy. . NDVly3,5 . NDViysy., NDVI o 0.903** 0.900

** Significant at the 0.01 probability level

NDVI__., NDVI during the returning green stage; NDVI. , NDVI during the jointing stage; NDVI, , NDVI during the heading stage; NDVI___, NDVI
rgs js hs mrs
during the milk ripening stage.
Agronomy Journal ¢ Volume II1, Issue 4 - 2019 1897
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Fig. 5. Distribution map of winter wheat yield spatialized from county-level statistical data.

finally chose NDVI ., NDVIy35,0 NDVIsp o and
NDV126Ju 1 to build the spatialization model.

Winter Wheat Yield Distribution

The 250-m resolution spatial distribution map of the winter
wheat yield in Shandong Province is shown in Fig. 5. It can be
seen from Fig. 5 that winter wheat yield was higher in the west-
ern and southwestern parts of Shandong Province and lower in
the central hilly region and coastal fringe. The yield distribution
generally shows a pattern of high in the west and low in the east.

Because of the lack of township-level winter wheat yield
data, the model accuracy for the spatialization of winter wheat
yield established at county level cannot be estimated. Thus
we used indirect methods to verify the accuracy of the model.
The spatialization model for winter wheat yield was based on
municipal-level data and the spatial distribution map of winter
wheat yield was obtained (Fig. 6). With the county-level winter
wheat yield data as a reference, we calculated the relative error
for each county. The average relative error was 22.71%. The
scatter map of the spatialized yield and the statistical yield at
county level is shown in Fig. 7. Most of the scatter points are
close to the 1:1 line.

Uncertainty Analysis

Uncertainties in Extracting the
Winter Wheat Planting Area

During the process of winter wheat planting area extraction,
the remote sensing data pre-processing, the complexity of the
types of land objects, the spatial resolution of the remote sensing
images, and the classification method all influence the results of
extracting the winter wheat planting area.

Data Preprocessing . The remote sensing data used in the
experiment were MODIS product data (MODI13Q1), which

comprise 16-d synthetic vegetation index products with a high
time resolution. These can reflect the NDV1 values of different
phenological phases in the crop growing season and MODIS

is one of the best data sources for extracting crop areas. In this
experiment, the Savitzky—Golay filter was used to smooth

the MODIS NDVI data. It improved the smoothness of the
spectrum and reduced noise interference. However, the filtered
results were influenced by the size of the filter window and the
fitting polynomial order. Choosing an appropriate filter window
size and the polynomial fitting order are important for reducing
the noise of the winter wheat phenological curve and enhancing
the fitting degree of the phenophase curve.

Complexity of the Type of Land Objects. In this paper,
the topography of the study area is mainly plains and hills. The
plains are located in the western and southwestern parts of
Shandong Province. This type of land is simple, the arable land
is concentrated, and the accuracy of the extraction area of winter
wheat is high. The hills in the central part of Shandong Province
are undulating and the terrain is more complex, mostly in the
mountains. Forestry is relatively well developed and the arable
land is broken. The area of winter wheat is small and the classifi-
cation accuracy of the winter wheat planting area is low. Through
experiments, it has been found that the accuracy of winter wheat
plantingarea in SR2 is lower than that in SR1. Through the
introduction of an existing distribution map of farmland fields
and the improvement of remote sensing image quality, the accu-
racy of extracted crop planting area in SR2 can be improved.

Spatial Resolution. The MODIS NDVI data used in this
study had a spatial resolution of 250 m. The land objects in the
hilly region are complex and the arable land is broken. The pixel
mixing phenomenon is serious, aggravating classification errors.
In future research, high spatial resolution remote sensing data
(such as Landsat Thematic Mapper, GF-1, GF-2, etc.) can be
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Fig. 6. Distribution map of winter wheat yield spatialized from municipal level statistical data.

introduced to reduce the problem of mixed pixels and improve
the accuracy of extracting winter wheat planting area.

Method of Extracting Winter Wheat Planting Area.
To improve the classification accuracy, researchers have pro-
posed many different methods, such as an artificial intelligence
neural networks, decision trees, support vector machines, and
more. The decision tree classification method can make full use
of the spectral features and other auxiliary information for the
image and effectively solve the problem of different objects hav-
ing the same spectrum and the same objects having a different
spectrum. In the conventional decision tree method, a classifica-
tion decision tree is built through empirical judgment, which is
greatly influenced by the operator’s experience and skills and is
based on single-phase or multiphase remote sensing data, which
only includes some information on the crop growing season. In
this study, the MODIS NDVI data, covering the entire winter
wheat growing season, were used in the classification to reduce
the interference of other crop information. A large number of
training samples were selected by high-resolution images and
a decision tree was automatically established via the CART
algorithm to avoid human interference. Besides this, we divided
the study area into two subregions on the basis of factors, such
as planting systems and the complexity of the land cover type,
and established a decision tree respectively for each subregion to
improve the classification accuracy.

Uncertainties about Winter Wheat Yield Spatialization

At present, the crop yield data were collected by administrative
units without spatial location information. In this study, we built
a spatialization model based on MODIS NDVI data and used
it to spatialize the winter wheat statistical yield data to obtain a

spatial distribution map of winter wheat yield. The spatialization
model is influenced by various factors, as described below.

The Effect of Winter Wheat Area Extraction Accuracy
on the Spatialization of the Yield. The classification of the
winter wheat planting area is the basis for the spatialization of
winter wheat yield. The accuracy of the winter wheat yield spatial-
ization is impacted by the accuracy of planting area classification.
The overall accuracy of the winter wheat planting area in SR2
is relatively low, mainly caused by omission errors. The classi-
fied planting area of winter wheat was lower than the officially
reported statistical area, resulting in a higher average value for the
yield in winter wheat pixels after spatialization. The user accuracy
of the winter wheat planting area in SR1 is relatively low, showing
more commission errors. In a comparison with the high-resolu-
tion images, it was found that the ridges between field plots were
also classified as winter wheat planting areas. The classified winter
wheat planting area was larger than the officially reported statisti-
cal area, resulting in a lower average yield in winter wheat pixels.
In this study, we reclassified the counties where the winter wheat
classification accuracy was lower than 60% to improve the overall
accuracy. In future, more work should be done to improve the
classification accuracy and ultimately increase the precision of the
spatialization of winter wheat yield. Introducing a distribution
map of farmland plot data and the spectral unmixing method
might improve the classification of low-resolution images.

Variables Selected for the Spatialization of Winter
Wheat Yield. The existing grain yield spatialization research
(Liuand Li, 2012; Ji et al., 2015) built spatial models based on
factors such as population density and acreage of different farm-
land types. In reality, the correlation between single crop yield,
population density, and farmland area type is relatively low.
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Fig. 7. Comparison of spatialized yield and statistical yield at
county level.

Many published studies show that there is a significant correla-
tion between winter wheat yield and the winter wheat growth
season NDVT (Chen et al., 2004; Mkhabela et al., 2011). The
equations regressing the NDVI variables of the winter wheat
growing season and the yield of winter wheat were established.
The correlation between the NDV1I variables and winter wheat
yield, the standardized residual histogram of the regression
model, and the RMSE of the fitting equation were analyzed to
determine the factors involved in the spatialized model of win-
ter wheat yield in this paper. Currently, the factors involved in
the spatial model mainly take into account the statistical rele-
vance rather than the formative mechanism of crop yield. Gross
primary productivity is highly correlated with biological pro-
ductivity and commonly used in crop yield estimations (Lobell
etal,, 2003; Reeves et al,, 2005). Gross primary productivity
products are also available from MODIS. In future, we will

try to build a crop yield spatialization model from the MODIS
gross primary productivity products and compare it with the
model based on MODIS NDVI data.

Limitations of the Spatialization Methods. In this paper,
to ensure that the error of the spatialized model was distributed
within the county administrative unit, our method used the
weights of the variables in the county-level administrative unit
to allocate the county-level yield. The spatialized results show
a block phenomenon. However, this method can control the
spatial model error within the minimum allocation unit and
improve the accuracy of the spatial model.

Spatialization Differences in Statistical Data at
Different Scales. In the spatialization model, the models con-
structed from data at different scales have several differences. The
smaller the geopolitical unit of the statistical data inputted in
the model, the higher the accuracy of the model and vice versa.
Statistical data at the municipal level do not reflect the differ-
ences among counties within the municipality. Visually, the yield
distribution map is smoother if it is based on the spatialization
of municipal-level statistics than on county-level statistics (Fig. 5
and Fig. 6), which indicates that the local differences of the winter
wheat yield spatialization results (Fig. 5) were larger for the county-
level statistics than for the municipal-level statistics (Fig. 6).

CONCLUSIONS

Taking the winter wheat in Shandong Province as an exam-
ple, this study proposed a method for spatialization based on
NDVI. On the basis of the MODIS-NDVI time series data of
the growing season of winter wheat, the planting area of winter
wheat was extracted by the CART algorithm. The NDVI value
of each phenological period was calculated by combining the
phenological period information for winter wheat. We ana-
lyzed the relationship between winter wheat yield with NDVI
variables (include single-phase NDVIs and the average NDVI
of different growing stages) via univariate linear regression and
multiple linear regression and chose the NDVT variables with
the highest correlations to winter wheat yield and the minimum
RMSE of the fitting equation as input variables to build the spa-
tialization model and make a spatial distribution map of winter
wheat yield. The main conclusions are as follows:

(i) On the basis of the MODIS NDVI data of the growing
season of winter wheat, we extracted the winter wheat
planting area via the CART classification algorithm. The
spatial location accuracy estimated with the confusion
matrix was 82.51% and the average precision of planting
acreage compared with statistical data at the county level
was 87.64%.

(ii) The identification accuracy of the winter wheat planting
area in SR1 was higher than that in SR2. The commission
error of the winter wheat planting area in SR2 was higher
than that in SR1. The omission error of the winter wheat
planting area in SR1 was higher than that in SR2.

(iii) After consideration of the correlation between win-
ter wheat yield and NDVI variables, the standardized
residual histogram of the regression model, the RMSE
of the fitting equation, and the influencing factors of
winter wheat yield, the final variables used to build the
spatialization model were: NDVI (-, NDVI,, Apr
NDVI, 5y, ay and NDVIZG]un -

(iv) The experiment used indirect methods for verifying
the accuracy, the spatialization model of winter wheat
yield was established from the municipal-level data and
the spatial distribution map of winter wheat yield was
obtained. We compared the spatialized yield with the
officially reported yield at the county level and found the
average relative error of spatialization to be 22.71%.

Spatialization of grain yield can provide spatial information
for statistical data on grain yield and provide basic data for
the development of agriculture. In future research, high spa-
tial-temporal resolution data and accurate parcel data could be
introduced to improve the accuracy of extracting grain-planting
areas. Other variables (such as gross primary productivity) could
be introduced to spatialize crop yields to improve the accuracy
of grain yield spatialization.
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