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Abstract
Grain yield data based on administrative divisions (counties, cit-
ies, etc.) for statistics lack spatial information, which can be effec-
tively solved by grain yield spatialization. This paper proposes 
a spatialization method for grain yield based on the Moderate 
Resolution Imaging Spectroradiometer (MODIS) Normalized 
Difference Vegetation Index (NDVI) time series data. The 
method was tested by taking winter wheat (Triticum aestivum 
L.) in Shandong Province in China as an example. First, the 
classification and regression tree (CART) algorithm was trained 
to extract the winter wheat planting pixels in 2016. The average 
NDVIs of the different growing stages (returning green, jointing, 
heading, and milk ripening) were calculated from the MODIS 
NDVI time series data. The relationship between winter wheat 
yield and NDVI variables (including single-phase NDVI and 
the average NDVI of different growing stages) was analyzed by 
univariate and multiple linear regressions. The NDVI variable 
with the highest correlation to winter wheat yield and the mini-
mum root mean square error of the fitting equation were chosen 
as input to build the spatialization model. The results show that 
the classification accuracy of winter wheat estimated with the 
confusion matrix was 82.51% and that the average precision of 
planting acreage compared with county-level statistical data was 
87.64%. The average relative error of yield spatialization at the 
county level was 22.71%. The method developed in this paper 
is easy to operate and popularize, and it can provide a technical 
reference for producing high-resolution crop yield distribution 
maps of long time series through spatialization.

Core Ideas
•	 · Dividing the study area into subregions and classifying them im-

proved winter wheat classification accuracy.
•	 · Single-phase Normalized Difference Vegetation Indices acquired 

on 6 March, 23 April, 25 May, and 29 June were the best variables 
for building the wheat yield spatialization model.

•	 · The extraction accuracy of winter wheat area greatly impacted the 
spatialization of yield.

•	 · The proposed model can provide a technical reference for 
producing high-resolution crop yield distribution maps.

Agriculture is fundamental for human society. 
Agricultural production statistics are of paramount 
importance for societal, economic, agricultural, and 

policy concerns (Carletto et al., 2015). Therefore, governments 
are committed to collecting data on agricultural production to 
understand agricultural development and assist in formulating 
agricultural development policies. However, agricultural pro-
duction statistics are reported on a geopolitical basis, such as by 
country, province, or city and are generally available in tabular 
form, which cannot provide fine-scale distribution information 
within geopolitical units (You and Wood, 2006). Fine-scale dis-
tribution information on agricultural production is valuable for 
a wide range of applications, such as field management, crop yield 
gaps, and agricultural insurance (Lobell, 2013). The spatializa-
tion of tabular crop production statistics from geopolitical units 
to subregions or even individual pixels is an effective method for 
producing fine-scale distribution information on crop produc-
tion within geopolitical units (You and Wood, 2006).

The concept of ‘spatialization’ was proposed in the early 
1990s (Tobler et al., 1995, 1997). It uses certain methods 
or parameters to build a model, then the model is applied to 
describe the distribution of data over a certain time and space 
scale. Over the past few decades, the spatialization of social and 
economic statistics has become a hot topic in many disciplines. 
The methods used for spatializing statistical data can be gener-
ally divided into four categories: spatial interpolation models 
(Huffman et al., 2007; Vicente-Serrano et al., 2003; Stahl et 
al., 2006), spatial allocation models based on land use and land 
cover data (Matlock et al., 1996; Yang et al., 2009), multisource 
data fusion models (Sutton et al., 2001; Wu et al., 2006; Azar et 
al., 2013), and remote sensing inversion models (Elvidge et al., 
1997; Ghosh et al., 2010; Li et al., 2013).

Currently, the spatialization of statistical data mainly focuses 
on population data (Liu et al., 2008; Fisher and Langford, 1995; 
Mennis, 2003) and gross domestic product data (Yue et al., 
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2014; Elvidge et al., 2001; Henderson et al., 2003). There is little 
research on the spatialization of agricultural economic statistics, 
because agricultural production activities are affected by many 
factors, including geographical location, climatic characteris-
tics, and soil hydrology; therefore, it is difficult to spatialize. 
Of those that have considered the spatialization of agricultural 
economic statistics, researchers have paid more attention to the 
spatialization of crop planting areas (You and Wood, 2005; You 
et al., 2009; Khan et al., 2010; Monfreda et al., 2008) and the 
spatialization of agricultural production inputs (Potter et al., 
2010; Zhu et al., 2012); the spatialization of grain yield statisti-
cal data is rare. On the basis of a 1-km resolution population 
density map, Liu and Li (2012) built a regression model using 
the population density as the dependent variable and the grain 
yield per unit of arable land as the independent variable. The 
model was used to produce a grain output map for China, with 
a 1-km spatial resolution, in 2000. On the basis of this 1-km 
resolution land cover map, Ji et al. (2015) developed the relation-
ship between the acreages of different farmland types and grain 
yield to spatialize the grain yield of China in 2005. Their study 
focused on the total grain yield rather than the yield of a given 
crop type. However, a spatial distribution map of the yield of 
different crop types is more useful than a spatial distribution 
map of the total grain yield for research on agriculture activities.

Remote sensing technology has become one of the meth-
ods used for studying regional spatial patterns of crops and 
their dynamic changes due to its large-scale, high efficiency, 
and rapidity (Lei et al., 2012). Moderate Resolution Imaging 
Spectroradiometer (MODIS) NDVI is a very popular data 
source for crop distribution maps and crop yield estimations 
for large-scale studies (Fritz et al., 2008; Potgieter et al., 2013). 

Lots of studies have explored the empirical relationship between 
NDVI and crop yield (Mkhabela et al., 2005; Huang et al., 
2014; Mashaba et al., 2017). However, different studies have 
used different NDVI variables, such as original NDVI, average 
or accumulated NDVI over the growth period, average or accu-
mulated NDVI over key growing stages, etc.

This paper takes winter wheat in Shandong Province as an 
example, analyzes the relationship between NDVI variables 
with winter wheat yield, and chooses the best NDVI variables 
to build a spatialization model of winter wheat yield and make 
a yield distribution map of winter wheat with 250-m resolution. 
The remote sensing data used in this paper have the advantages 
of global coverage, free access, high spatial resolution (250 m), 
and a long coverage time (2000–2019). The method developed 
in this paper is easy to operate and popularize, and it can pro-
vide a technical reference for producing high-resolution (up to 
the 250-m pixel level) crop yield distribution maps of long time 
series through spatialization. The resulting high-resolution crop 
yield distribution map of long time series can help us to analyze 
the temporal and spatial changes of grain yield, and provide 
basic data for the agricultural insurance industry, agricultural 
planting systems, and agricultural disaster assessment.

Study Area and Data
Study Area

Shandong Province is located on the east coast of China and 
the lower reaches of the Yellow River, ranging from 34°22.9´ to 
38°24.01́ N and 114°47.5́  to 122°42.3́ E (Fig. 1). It has a land area 
of 155,800 km2, 17 cities, and 137 counties. Shandong Province 
belongs to the warm temperate monsoon climate type. Its rainfall 
is concentrated within a short period; rain and heat occur within 

Fig. 1. Study area location. (a) Distribution of Subregion 1 (SR1, plains) and Subregion 2 (SR2, hilly region). (b) Distribution map of the 
winter wheat sample.
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the same period. The frost-free period is increasing from the 
northeast coast to the southwest. Its light resources are abundant 
and the heat conditions can meet the needs of two crops per year. 
Shandong is one of the major food production provinces in China. 
The grain crops are divided into summer grain and autumn 
grain. The summer grain is mainly winter wheat; the autumn 
grain is mainly corn (Zea mays L.), potato (Solanum tuberosum 
L.), soybean [Glycine max (L.) Merr.], rice (Oryza sativa L.), mil-
let [Setaria italica (L.) P. Beauv.], sorghum [Sorghum bicolor (L.) 
Moench.], and small grains. Among these, wheat, corn, and potato 
are the three major food crops in Shandong.

Datasets

The data used in this paper include: (i) the MODIS-NDVI 
(MOD13Q1) time-series data, (ii) the Digital Elevation Model, 
(iii) winter wheat planting area statistics for Shandong Province, 
(iv) winter wheat yield statistics for Shandong Province, and 
(v) Landsat-8 Operational Land Imager, Gaofen (GF) 1, GF-2, 
and Google Earth imagery. The details of the data, including the 
sources, are shown in Table 1.

Methods
The spatialization process of the winter wheat yield, based on 

MODIS-NDVI time series data, is shown in Fig. 2. It mainly 
includes: (i) preprocessing of MODIS-NDVI time series data, 
the division of the research area and examination of winter 
wheat statistical data on planting area and yield; (ii) selection 
of winter wheat samples, based on high-resolution remote 
sensing data, and extracting winter wheat planting area, based 
on the classification and regression tree (CART) algorithm; 
(iii) calculation of the average NDVI during different winter 
wheat growing stages and analysis of the relationship between 
the NDVI variables and winter wheat yield; (iv) building the 
spatial model for winter wheat yield spatialization; and (v) veri-
fying the accuracy of winter wheat yield spatialization.

Data Preprocessing

First, MRT software (https://modis.gsfc.nasa.gov/tools/, 
accessed 14 May 2019) was used to convert the MODIS-NDVI 
time-series data in 2016 to Albers equal-area projections, with 
a resampling resolution of 250 m. The Savitzky-Golay filter 

method developed by Chen et al. (2004) was used to eliminate 
noise and smooth the MODIS-NDVI time series data. The 
MODIS-NDVI data during the winter wheat growing season 
in 2016 in Shandong Province were extracted for classification. 
Based on the phenological period information for winter wheat 
in Shandong Province, the average NDVI of the different grow-
ing stages (returning green, jointing, heading, and milk ripening 
stages) were calculated.

Considering the topographic characteristics of Shandong 
Province and the complexity of winter wheat planting plots, 
the study area was divided into a plain–simple landform region 
[referred to as Subregion (SR) 1] and a plain–complex hilly 
landform region (SR2) based on the Digital Elevation Model 
and administrative boundary data(Fig. 1a). The training and 
validation samples of winter wheat were selected by referring 
to high-resolution remote sensing data (Landsat-8 Operational 
Land Imager, GF-1, GF-2, etc.) (Fig. 1b). We examined the com-
pleteness and regularity of the data on winter wheat acreage and 
yield. Spatial linking of the statistical data and vector boundary 
data ensured there were statistical data on the winter wheat area 
and yield in each region.

Classification with the CART Algorithm

The CART algorithm is a decision tree construction algo-
rithm first proposed by Breiman et al. (1984). It is based on 
two recursive division segmentation techniques that divide the 
sample set into two subsets, giving two branches to each nonleaf 
node of the decision tree. The decision tree generated by the 
CART algorithm is a simple binary tree and thus there can only 
be a ‘yes’ or ‘no’ answer to every step.

The CART algorithm uses the Gini coefficient (Gini index) 
in economics as the criterion for selecting the best test variables. 
The selection criterion is that each subnode must achieve the 
highest purity or, in other words, all the elements of the sub-
nodes must belong to the same category. Assuming the dataset 
S, there are n class categories {C1, C2,..., Cn} in total, and each 
class is a sample subset Ci = Si (1 ≤ i ≤ n). |S| is the number of 
samples in the sample set, |Ci| is the number of subsets Ci in 
the sample set S, /i iC Sρ =  is the probability that the sample 
in the sample set belongs to class Ci, and the Gini coefficient of 
dataset S can be expressed as:

Table 1. Data details and sources.
 
Data name

 
Year

Spatial  
resolution

Time  
resolution

 
Source

 
Application

Moderate Resolution Imaging 
Spectroradiometer normalized 
difference vegetation index

2016 250 m 16 d USGS† Extracting the planting area and 
building the yield spatialization model 
for winter wheat

Digital Elevation Model – 90 m – USGS Subdividing the study area
Winter wheat planting area statistics in 
Shandong Province

2016 – – Shandong Provincial 
Bureau of Statistics‡ 

Verifying the accuracy of extracted 
winter wheat area 

Winter wheat yield statistics in 
Shandong Province

2016 – – Shandong Provincial 
Bureau of Statistics 

Targeted data for spatialization

Landsat-8 Operational Land Imager 2016 30 m – USGS Selection of winter wheat samples
Gaofen-1 2016 16 m – Geospatial data cloud§ Selection of winter wheat samples
Gaofen-2 2016 4 m – Geospatial data cloud Selection of winter wheat samples
Google Earth imagery 2016 – – Google Earth software, 

Google, Santa Clara, CA,
Selection of winter wheat samples

† US Geological Survey (USGS) (http://glovis.usgs.gov/, accessed 10 May 2019).
‡ http://xxgk.stats-sd.gov.cn/ (accessed 10 May 2019) 
§ http://www.gscloud.cn/ (accessed 10 May 2019).
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Based on high-resolution remote sensing data and Google 
Earth imagery, training samples were selected for the two subre-
gions. Based on the MODIS-NDVI data of the growing season 
of winter wheat, the CART classification method was used to 
establish the decision tree automatically for winter wheat plant-
ing area identification, and the winter wheat planting areas in 
SR1 and SR2 were extracted. The classification results of the 
two subregions were merged into the distribution map of winter 
wheat in Shandong Province.

The classified winter wheat planting area of each county was 
evaluated by using the county boundary map and was compared 
with the statistical data on the winter wheat planting area. The 
accuracy of the classified planting area (the absolute value of 
the difference between the statistical acreage and the classified 
acreage divided by the statistical acreage) in each county was 
calculated; counties with a classification accuracy less than 60% 
were selected. The decision tree was re-established for the images 
of the selected counties to improve the classification accuracy.

Selection of Regression Factors

Existing studies have shown that the winter wheat yield 
is closely related to the NDVI during the growing season 
(Mkhabela et al., 2011; Hansen and Schjoerring, 2003). 
Therefore, we extracted eight 16-d MODIS-NDVI data periods 
during the winter wheat growing season in Shandong Province, 
the starting dates of which were 6 March 6, 22 March, 7 April, 
23 April, 9 May, 25 May, 10 June, and 26 June. The abbrevia-
tion NDVI9May represents the 16-d MODIS-NDVI during 9 to 
24 May. By combining the winter wheat phenology information 

from Shandong Province, we calculated the average NDVI of the 
returning green stage (the mean of NDVI6Mar and NDVI22Mar), 
jointing stage (the mean of NDVI7Apr and NDVI23Apr), heading 
stage (the mean of NDVI9May and NDVI25May), and the milk 
ripening stage (the mean of NDVI10June and NDVI26June). The 
eight single-phase NDVIs and the NDVIs of the four phenologi-
cal stages in the winter wheat growing season were aggregated at 
county level as input variables.

In SPSS software (version 25.0, IBM Corp., Armonk, NY), 
univariate linear regression was established between each NDVI 
variable and the winter wheat yield and the correlation coef-
ficient was determined and tested for significance. Multivariate 
linear regressions between NDVI variables and winter wheat 
yield were established from the independent variable to deter-
mine the number of input variables and correlation coefficients. 
The equations for the univariate linear regression and multiple 
regression are as follows:

iY aX b= + , [2]

0 1 1 ... n nY X Xβ β β= + + + , [3]

where Y  represents the winter wheat yield, Xi represents the 
NDVI of the different phases, and a, b, and 0β ... nβ  are con-
stants. Finally, the correlation coefficient between each input 
variable and the winter wheat yield, the regression’s standard-
ized residual histogram, and the minimum root mean square 
error (RMSE) of the fitting equation were analyzed. The NDVI 
variable with the highest correlation coefficient for winter wheat 
yield and the minimum RMSE of the fitting equation were 
selected as the spatialization factors of winter wheat yield.

Fig. 2. Technical flowchart.
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Building the Spatial Model

According to the analysis results in the Selection of 
Regression Factors section above, the NDVI of the four single-
phase stages were chosen as the optimal input variables for 
building the spatialization model of winter wheat yield (details 
on the analyses are given in the Spatialization Model Factors 
section). For a given county, the spatial model is as follows:

4
,

1
,

1

( )i j
j in

i
i j

j

NDVI
Y Y

NDVI
α

=

=

′ = × ×∑
∑

; [4]

4

1
i i i

i
p pα

=

= ∑ , [5]

where 
jY ′  represents the spatialized yield of winter wheat pixel 

j ( j = 1,...n), n is the number of pixels classified as winter wheat 
in the given county, Y  represents the statistical winter wheat 
yield of the given county, ,i jNDVI  represents the NDVI of the 
ith stage, i (= 1, 2, 3, 4) represents the four single-phase stages, 

,
1

n

i j
j

NDVI
=

∑  represents the sum of the NDVIs of all winter 

wheat pixels in a given county in the ith stage, ip  represents the 
correlation coefficient between the NDVI and the statistical 
yield in the ith stage, and iα  represents the correlation coeffi-
cient normalization result for the ith stage.

Validation of the Accuracy

In this paper, validation of the accuracy included two steps: 
verifying the planting area classification and verifying the 
yield spatialization results. The verification of the planting area 

classification was performed by the standard confusion matrix 
method, in which 595 validation samples of winter wheat were 
randomly selected in Shandong Province (Fig. 1) for calculating 
the confusion matrix. In total, 403 samples were located in SR1 
and 192 samples are in SR2. The verification method for the 
spatialization results usually made a comparison between the 
fine-scale data (such as the township level) and the spatialized 
results from the data at a coarser scale (county level). For this 
study, there were no official statistical winter wheat yield data at 
township level in Shandong Province; therefore, we used indi-
rect methods to verify the accuracy of our spatial model. The 
indirect validation method involved making 250-m resolution 
spatial distribution map of the winter wheat yield based on our 
spatialization model with winter wheat yield at the municipal 
level. The total winter wheat yield at county level was calculated 
from the distribution map and was compared with statistical 
data on the total yield of winter wheat at the county level.

Results and Discussion
Winter Wheat Distribution

The winter wheat distribution map of Shandong Province is 
shown in Fig. 3. Winter wheat in Shandong Province is mainly 
distributed in the western plain area, the southwest plain area, 
and the flat terrain in the middle. The plains area, in which the 
main industry is agriculture and other primary industries, is 
main area for winter wheat planting. The terrain in the central 
hilly region is complex, the land is fragmented, and the natural 
conditions are poor, all of which are not conducive to the culti-
vation of winter wheat. The coastal areas are economically devel-
oped regions, where the main industries are in the secondary 
and tertiary sectors and the winter wheat acreage is small.

Fig. 3. Distribution map of winter wheat planting area.
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Two methods were used to verify the classification accuracy of 
the winter wheat planting area. One was the confusion matrix; 
the other was a comparison with statistical data (Table 2). It can 
be seen from Table 1 that the overall accuracy of classification 
in SR1 was higher than that in SR2. The omission error in SR1 
is higher than that in SR2 and the commission error in SR2 is 
higher than that in SR1. The overall accuracy of identifying the 
winter wheat planting area in Shandong Province was 82.51%, the 
producer accuracy was 83.26%, and the user accuracy was 78.91%. 
In addition, in a comparison with the actual winter wheat plant-
ing area (the statistics), we found that the average accuracy of rec-
ognizing winter wheat planting area in SR1, SR2, and the whole 
province was 92.88, 81.28, and 87.64%, respectively.

Spatialization Model Factors

The correlation between different NDVI variables and winter 
wheat yield was obtained by univariate linear regression and 
multiple linear regression analysis (Table 3). From Table 3, we 
can see that in the univariate linear regression analysis, when the 
independent variable was a single-phase NDVI, the correlation 
between the NDVI7Apr and winter wheat yield was the highest 
(R2 = 0.901, P ≤ 0.05). When the independent variable was the 
phenophase NDVI, the NDVI of the jointing stage had the high-
est correlation with winter wheat yield (R2 = 0.900, P ≤ 0.05).

In the multiple linear regression analysis, when the input 
of the independent variables was the single-phase NDVI vari-
ables, the variables for the linear regression were selected as: 
NDVI6Mar, NDVI23Apr, NDVI25May, and NDVI26June. When 
the input of the independent variables was the phenophase 

NDVI variables, the variables of the linear regression were: 
returning green stage NDVI, jointing stage NDVI, heading 
stage NDVI, and milk ripening stage NDVI; the NDVIs of 
all four stages were used to build the linear regression model. 
When the input variables included both single-phase and phe-
nophase NDVI variables, the variables in the linear regression 
were selected as: NDVI6Mar, NDVI23Apr, NDVI25May, and 
milk ripening stage NDVI. All three multiple linear regression 
models passed the significance test (R2 = 0.903, P ≤ 0.05).

To further select the variables involved in the spatialization 
of winter wheat yield, we analyzed the residuals of the univari-
ate linear regression and the multiple linear regression; the 
regressions’ standardized residual histogram is shown in Fig. 4, 
alongside the RMSE of the fitting equation. In the standard-
ization residual histogram of the regression, the normal curve 
is a criterion for judging whether the standardized residual 
histogram conforms to a normal distribution. From Fig. 4, we 
can see that in the linear regression, the standardized residual 
histograms of both linear regression equations are in accordance 
with normal distribution. The SD of the standardized residual 
error histogram of the multiple linear regression was smaller and 
more consistent with the normal distribution, indicating that 
the multiple linear regression model is superior to the univariate 
linear regression model. In a comparison of the equation fitting 
effects of three multiple linear regressions, the RMSE of the fit-
ted equation was calculated separately. When the independent 
variable was a single-phase NDVI variable, the RMSE was the 
smallest. The single-phase NDVI variables were: NDVI6Mar, 
NDVI23Apr, NDVI25May, and NDVI26June. Therefore, we 

Table 2. Verification of the accuracy of winter wheat planting area.

Region
Winter  

wheat samples
Confusion matrix Statistical data

Producer accuracy User accuracy Overall accuracy Average accuracy 
n ————————————————— % —————————————————

Subregion 1† 403 88.63 77.84 86.03 92.88
Subregion 2 192 74.69 82.24 78.34 81.28
Subregion 1 + Subregion 2 595 83.26 78.91 82.51 87.64
† Subregion 1, plains region; Subregion 2, hilly region.

Table 3. Regression model correlation.
Methods Independent† R2 Adjusted R2

Univariate linear 
regression

Single-phase NDVI6Mar 0.864** 0.863
NDVI022Mar 0.894** 0.894
NDVI7Apr 0.901** 0.900
NDVI23Apr 0.897** 0.897
NDVI9May 0.888** 0.887
NDVI25May 0.872** 0.871
NDVI10June 0.856** 0.855
NDVI26June 0.861** 0.860

Phenological stages NDVIrgs 0.885** 0.884
NDVIjs 0.900** 0.899
NDVIhs 0.883** 0.882
NDVImrs 0.861** 0.860

Multiple linear 
regression

Single-phase NDVI6Mar, NDVI23Apr, NDVI25May, NDVI26June 0.903** 0.900
Phenological stages NDVIrgs, NDVIjs, NDVIhs, NDVImrs 0.903** 0.900

Single-phase and phenological stages NDVI6Mar, NDVI23Apr, NDVI25May, NDVImrs 0.903** 0.900
**, Significant at the 0.01 probability level
† NDVIrgs, NDVI during the returning green stage; NDVIjs, NDVI during the jointing stage; NDVIhs, NDVI during the heading stage; NDVImrs, NDVI 
during the milk ripening stage. 
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Fig. 4. Standardized residual histogram of the regressions.
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finally chose NDVI6Mar, NDVI23Apr, NDVI25May, and 
NDVI26June to build the spatialization model.

Winter Wheat Yield Distribution

The 250-m resolution spatial distribution map of the winter 
wheat yield in Shandong Province is shown in Fig. 5. It can be 
seen from Fig. 5 that winter wheat yield was higher in the west-
ern and southwestern parts of Shandong Province and lower in 
the central hilly region and coastal fringe. The yield distribution 
generally shows a pattern of high in the west and low in the east.

Because of the lack of township-level winter wheat yield 
data, the model accuracy for the spatialization of winter wheat 
yield established at county level cannot be estimated. Thus 
we used indirect methods to verify the accuracy of the model. 
The spatialization model for winter wheat yield was based on 
municipal-level data and the spatial distribution map of winter 
wheat yield was obtained (Fig. 6). With the county-level winter 
wheat yield data as a reference, we calculated the relative error 
for each county. The average relative error was 22.71%. The 
scatter map of the spatialized yield and the statistical yield at 
county level is shown in Fig. 7. Most of the scatter points are 
close to the 1:1 line.

Uncertainty Analysis

Uncertainties in Extracting the 
Winter Wheat Planting Area

During the process of winter wheat planting area extraction, 
the remote sensing data pre-processing, the complexity of the 
types of land objects, the spatial resolution of the remote sensing 
images, and the classification method all influence the results of 
extracting the winter wheat planting area.

Data Preprocessing . The remote sensing data used in the 
experiment were MODIS product data (MOD13Q1), which 

comprise 16-d synthetic vegetation index products with a high 
time resolution. These can reflect the NDVI values of different 
phenological phases in the crop growing season and MODIS 
is one of the best data sources for extracting crop areas. In this 
experiment, the Savitzky–Golay filter was used to smooth 
the MODIS NDVI data. It improved the smoothness of the 
spectrum and reduced noise interference. However, the filtered 
results were influenced by the size of the filter window and the 
fitting polynomial order. Choosing an appropriate filter window 
size and the polynomial fitting order are important for reducing 
the noise of the winter wheat phenological curve and enhancing 
the fitting degree of the phenophase curve.

Complexity of the Type of Land Objects. In this paper, 
the topography of the study area is mainly plains and hills. The 
plains are located in the western and southwestern parts of 
Shandong Province. This type of land is simple, the arable land 
is concentrated, and the accuracy of the extraction area of winter 
wheat is high. The hills in the central part of Shandong Province 
are undulating and the terrain is more complex, mostly in the 
mountains. Forestry is relatively well developed and the arable 
land is broken. The area of winter wheat is small and the classifi-
cation accuracy of the winter wheat planting area is low. Through 
experiments, it has been found that the accuracy of winter wheat 
planting area in SR2 is lower than that in SR1. Through the 
introduction of an existing distribution map of farmland fields 
and the improvement of remote sensing image quality, the accu-
racy of extracted crop planting area in SR2 can be improved.

Spatial Resolution. The MODIS NDVI data used in this 
study had a spatial resolution of 250 m. The land objects in the 
hilly region are complex and the arable land is broken. The pixel 
mixing phenomenon is serious, aggravating classification errors. 
In future research, high spatial resolution remote sensing data 
(such as Landsat Thematic Mapper, GF-1, GF-2, etc.) can be 

Fig. 5. Distribution map of winter wheat yield spatialized from county-level statistical data.
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introduced to reduce the problem of mixed pixels and improve 
the accuracy of extracting winter wheat planting area.

Method of Extracting Winter Wheat Planting Area. 
To improve the classification accuracy, researchers have pro-
posed many different methods, such as an artificial intelligence 
neural networks, decision trees, support vector machines, and 
more. The decision tree classification method can make full use 
of the spectral features and other auxiliary information for the 
image and effectively solve the problem of different objects hav-
ing the same spectrum and the same objects having a different 
spectrum. In the conventional decision tree method, a classifica-
tion decision tree is built through empirical judgment, which is 
greatly influenced by the operator’s experience and skills and is 
based on single-phase or multiphase remote sensing data, which 
only includes some information on the crop growing season. In 
this study, the MODIS NDVI data, covering the entire winter 
wheat growing season, were used in the classification to reduce 
the interference of other crop information. A large number of 
training samples were selected by high-resolution images and 
a decision tree was automatically established via the CART 
algorithm to avoid human interference. Besides this, we divided 
the study area into two subregions on the basis of factors, such 
as planting systems and the complexity of the land cover type, 
and established a decision tree respectively for each subregion to 
improve the classification accuracy.

Uncertainties about Winter Wheat Yield Spatialization
At present, the crop yield data were collected by administrative 

units without spatial location information. In this study, we built 
a spatialization model based on MODIS NDVI data and used 
it to spatialize the winter wheat statistical yield data to obtain a 

spatial distribution map of winter wheat yield. The spatialization 
model is influenced by various factors, as described below.

The Effect of Winter Wheat Area Extraction Accuracy 
on the Spatialization of the Yield. The classification of the 
winter wheat planting area is the basis for the spatialization of 
winter wheat yield. The accuracy of the winter wheat yield spatial-
ization is impacted by the accuracy of planting area classification. 
The overall accuracy of the winter wheat planting area in SR2 
is relatively low, mainly caused by omission errors. The classi-
fied planting area of winter wheat was lower than the officially 
reported statistical area, resulting in a higher average value for the 
yield in winter wheat pixels after spatialization. The user accuracy 
of the winter wheat planting area in SR1 is relatively low, showing 
more commission errors. In a comparison with the high-resolu-
tion images, it was found that the ridges between field plots were 
also classified as winter wheat planting areas. The classified winter 
wheat planting area was larger than the officially reported statisti-
cal area, resulting in a lower average yield in winter wheat pixels. 
In this study, we reclassified the counties where the winter wheat 
classification accuracy was lower than 60% to improve the overall 
accuracy. In future, more work should be done to improve the 
classification accuracy and ultimately increase the precision of the 
spatialization of winter wheat yield. Introducing a distribution 
map of farmland plot data and the spectral unmixing method 
might improve the classification of low-resolution images.

Variables Selected for the Spatialization of Winter 
Wheat Yield. The existing grain yield spatialization research 
(Liu and Li, 2012; Ji et al., 2015) built spatial models based on 
factors such as population density and acreage of different farm-
land types. In reality, the correlation between single crop yield, 
population density, and farmland area type is relatively low. 

Fig. 6. Distribution map of winter wheat yield spatialized from municipal level statistical data.
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Many published studies show that there is a significant correla-
tion between winter wheat yield and the winter wheat growth 
season NDVI (Chen et al., 2004; Mkhabela et al., 2011). The 
equations regressing the NDVI variables of the winter wheat 
growing season and the yield of winter wheat were established. 
The correlation between the NDVI variables and winter wheat 
yield, the standardized residual histogram of the regression 
model, and the RMSE of the fitting equation were analyzed to 
determine the factors involved in the spatialized model of win-
ter wheat yield in this paper. Currently, the factors involved in 
the spatial model mainly take into account the statistical rele-
vance rather than the formative mechanism of crop yield. Gross 
primary productivity is highly correlated with biological pro-
ductivity and commonly used in crop yield estimations (Lobell 
et al., 2003; Reeves et al., 2005). Gross primary productivity 
products are also available from MODIS. In future, we will 
try to build a crop yield spatialization model from the MODIS 
gross primary productivity products and compare it with the 
model based on MODIS NDVI data.

Limitations of the Spatialization Methods. In this paper, 
to ensure that the error of the spatialized model was distributed 
within the county administrative unit, our method used the 
weights of the variables in the county-level administrative unit 
to allocate the county-level yield. The spatialized results show 
a block phenomenon. However, this method can control the 
spatial model error within the minimum allocation unit and 
improve the accuracy of the spatial model.

Spatialization Differences in Statistical Data at 
Different Scales. In the spatialization model, the models con-
structed from data at different scales have several differences. The 
smaller the geopolitical unit of the statistical data inputted in 
the model, the higher the accuracy of the model and vice versa. 
Statistical data at the municipal level do not reflect the differ-
ences among counties within the municipality. Visually, the yield 
distribution map is smoother if it is based on the spatialization 
of municipal-level statistics than on county-level statistics (Fig. 5 
and Fig. 6), which indicates that the local differences of the winter 
wheat yield spatialization results (Fig. 5) were larger for the county-
level statistics than for the municipal-level statistics (Fig. 6).

Conclusions
Taking the winter wheat in Shandong Province as an exam-

ple, this study proposed a method for spatialization based on 
NDVI. On the basis of the MODIS-NDVI time series data of 
the growing season of winter wheat, the planting area of winter 
wheat was extracted by the CART algorithm. The NDVI value 
of each phenological period was calculated by combining the 
phenological period information for winter wheat. We ana-
lyzed the relationship between winter wheat yield with NDVI 
variables (include single-phase NDVIs and the average NDVI 
of different growing stages) via univariate linear regression and 
multiple linear regression and chose the NDVI variables with 
the highest correlations to winter wheat yield and the minimum 
RMSE of the fitting equation as input variables to build the spa-
tialization model and make a spatial distribution map of winter 
wheat yield. The main conclusions are as follows:

(i)	 On the basis of the MODIS NDVI data of the growing 
season of winter wheat, we extracted the winter wheat 
planting area via the CART classification algorithm. The 
spatial location accuracy estimated with the confusion 
matrix was 82.51% and the average precision of planting 
acreage compared with statistical data at the county level 
was 87.64%.

(ii)	The identification accuracy of the winter wheat planting 
area in SR1 was higher than that in SR2. The commission 
error of the winter wheat planting area in SR2 was higher 
than that in SR1. The omission error of the winter wheat 
planting area in SR1 was higher than that in SR2.

(iii)	After consideration of the correlation between win-
ter wheat yield and NDVI variables, the standardized 
residual histogram of the regression model, the RMSE 
of the fitting equation, and the influencing factors of 
winter wheat yield, the final variables used to build the 
spatialization model were: NDVI6Mar, NDVI23Apr, 
NDVI25May, and NDVI26June.

(iv)	The experiment used indirect methods for verifying 
the accuracy, the spatialization model of winter wheat 
yield was established from the municipal-level data and 
the spatial distribution map of winter wheat yield was 
obtained. We compared the spatialized yield with the 
officially reported yield at the county level and found the 
average relative error of spatialization to be 22.71%.

Spatialization of grain yield can provide spatial information 
for statistical data on grain yield and provide basic data for 
the development of agriculture. In future research, high spa-
tial–temporal resolution data and accurate parcel data could be 
introduced to improve the accuracy of extracting grain-planting 
areas. Other variables (such as gross primary productivity) could 
be introduced to spatialize crop yields to improve the accuracy 
of grain yield spatialization.
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