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Abstract Streamflow is controlled by multiple factors concurrently. However, the multivariate
relationship between global streamflow and meteorological factors/ocean signals is rarely explored at
different temporal scales. Determining a suite of factors that explain most of the variations in global
streamflow at multiple scales will be of great significance for water‐resource management and prediction.
Temporally dependent multivariate relationships between streamflow and meteorological factors/ocean
signals in 16 of the world's large rivers were identified using wavelet transform coherence and
multiple‐wavelet coherence. Prior to that, the continuous wavelet transform was used to detect temporal
patterns in streamflow. The continuous wavelet transform results showed that significant annual
oscillations occurred in all streamflow series over the study period, either with continuous annual
periodicity or with intermittent breaks. Oscillations with periodicities of around 4 to 6 months were also
found in many rivers. A comparison of the results from the wavelet transform coherence and
multiple‐wavelet coherence analyses indicated that streamflow variation could be best explained by one,
two, or three meteorological factors. The combination of factors that best explained streamflow variations
differed among the rivers, although total precipitation (PRE) or the number of rainy days (WET) either
alone or in combination was a dominant factor for all rivers. The most common best predictor was PRE
or/and WET combined with potential evapotranspiration. The differences in best predictor were due to
differences in latitude, radiation forcing, terrain, vegetation coverage, hydrological processes, and so forth.

1. Introduction

Water is essential for survival. Rivers, being the main source of freshwater on land, are vital for human
health, economic activities, ecosystem function, and geophysical processes. As the world's population con-
tinues to grow, water scarcity is accelerating across the globe (Arnell, 1999; Bogardi et al., 2013).
Therefore, the changing characteristics and long‐term trends in river flow have received great attention in
recent decades, especially with regard to the changing climate (Arnell & Lloyd‐Hughes, 2014; Haddeland
et al., 2014; Oki & Kanae, 2006; Schewe et al., 2014; Vorosmarty et al., 2000). Substantial research effort
has been focused on fluctuations in streamflow (Kong et al., 2015; Miao & Ni, 2009; Yang et al., 2017).

River flow is determined by the amount of precipitation minus the amount of water lost through evapotran-
spiration and is also affected by changes in storage, including as snow, ice, and groundwater, and by human
activities, including reservoir interception and water diversion (Yang et al., 2016). However, the effects of
water withdrawals and dams appear to be significant only for arid to semiarid river basins such as the
Indus, Yellow, and Tigris‐Euphrates basins (Milliman et al., 2008), and climate forcing predominates for
most of world's large rivers (Dai et al., 2009). Increased storage of water in reservoirs and water withdrawals
are compensated for by groundwater mining, urbanization, and the effects of deforestation (Dai et al., 2009).
The net sum of land effects is now thought to be small (Dai et al., 2009; Domingues et al., 2008; Ngo‐Duc
et al., 2005). In addition, the effect of dams on streamflow is mainly seasonal; we consider the coherence
of streamflow and predictors at all time scales, which therefore also minimizes the effect of dams on our
results (Dai et al., 2009; Döll et al., 2009). Precipitation is the main driver of global streamflow trends and
interannual variability inmost regions (Iles &Hegerl, 2015). Evapotranspiration plays a crucial role in global
climate change and in the hydrological cycle (Wang et al., 2006; Yang et al., 2019). In the overwhelming
majority of populated regions in the world, the proportion of precipitation lost to evapotranspiration is
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greater than that ends up as runoff (Wang et al., 2006). As well as affecting evapotranspiration, changes in
temperatures also influence streamflow via changes in the accumulation and ablation of snow and ice.

Substantial research has therefore focused on the relationship between streamflow and meteorological fac-
tors. Arnell (1999) examined the effect of different climate‐change scenarios on simulated global river flows
using a macroscale hydrological model. They predicted that river runoff would decrease in many areas of the
world owing to reduced precipitation over large regions of land coupled with an increase in evaporative
demand associated with higher temperatures. Milliman et al. (2008) detected the cumulative annual dis-
charge from 137 representative rivers over the last half of the twentieth century and found that the discharge
trends for many rivers generally reflected changes in precipitation, which were primarily due to fluctuations
in short‐ and longer‐term atmospheric‐oceanic signals. Gerten et al. (2008) used a global vegetation and
hydrology model (LPJmL) to quantify the factors contributing to river discharge and found that total global
discharge rose over the period 1901–2002, primarily because of increased precipitation, global warming, ris-
ing CO2 levels, and changes in land cover. McCabe and Wolock (2011) generated a monthly runoff data ser-
ies for global land areas for the period 1905–2002 using a monthly water‐balance model with CRUTS2.1
monthly temperature and precipitation data. They found that, even though annual precipitation accounted
for most of the temporal and spatial variability in annual runoff, increases in temperature have had an
increasingly negative effect on annual runoff since 1980. Increased temperatures cause a reduction in the
fraction of annual precipitation that becomes runoff (i.e., a reduction in runoff efficiency) owing to increases
in evapotranspiration. Tang and Lettenmaier (2012) estimated the runoff response to the changes in global
mean temperatures indicated by climate change experiments. The estimated ratio of runoff change to (local)
precipitation change (runoff elasticity) ranged from about one to three, and the runoff‐temperature sensitiv-
ity (change in runoff per degree of local temperature increase) ranged from decreases of about 2% to 6% over
most basins in North America and in the middle and high latitudes of Eurasia. Arnell and Gosling (2013)
used a global hydrological model to assess the impact of climate change on a series of hydrological‐regime
indicators. They found considerable variability between regions, largely due to differences in the projected
changes in precipitation. Beck et al. (2015) used observed streamflow from 3,000 to 4,000 small‐to‐med-
ium‐sized catchments located across the world to train neural network ensembles to estimate streamflow
characteristics from climate data and the physiographic characteristics of the catchments. Overall, climate
indices, including precipitation and evapotranspiration, dominated among the predictors (Beck et al., 2015).

The global hydrological cycle consists of water in the oceans, the atmosphere, and the landscape (David,
2010; Oki et al., 2004; Trenberth et al., 2007). As a main component of the hydrological cycle, river stream-
flow is influenced by complex ocean‐atmosphere interactions. Ocean‐atmosphere oscillations tend to be
strongly correlated with river streamflow and hence provide valuable information for hydrological forecast-
ing (Wanders & Wada, 2015). Indices describing coherent patterns of large‐scale ocean‐atmosphere oscilla-
tions, such as the Arctic Oscillation (AO), the North AO (NAO), the Southern Oscillation Index (SOI), Niño
3.4—the Pacific mean sea‐surface temperature (SST), the Dipole Mode Index (DMI), and the Pacific Decadal
Oscillation (PDO), act as convenient and relatively effective predictors of streamflow variability (Fleming &
Dahlke, 2014).

Several studies have examined the effects of these climate oscillations on river flow worldwide, though most
focused on the effects of the El Niño‐Southern Oscillation (ENSO) and changes at the annual time scale and
most were limited to specific regions of the world (Wanders & Wada, 2015). For example, Chiew and
McMahon (2002) reported clear ENSO‐streamflow teleconnections in an analysis based on two ENSO indi-
cators. David (2010) used a cross‐wavelet analysis to detect the relationships between estimated annual con-
tinental freshwater discharge and selected climate indices (NAO, AO, SOI, PDO, and Niño 3.4) over the
period 1876–1994 and found highly temporally nonstationary relationships with three main bands of varia-
bility (2–10, 10–20, and 20–30 years). Wanders and Wada (2015) showed strong correlations between the
NAO, the AO, or the PDO and modeled and observed global discharge anomalies over a 100‐year period.

Large rivers are an essential water resource for the surrounding living beings and are the sources of human
civilization. A large amount of research on the relationship between streamflow and various predicting fac-
tors has been performed on large rivers around the world, for example, on the relationships betweenmeteor-
ological factors/ocean signals and streamflow in the Amazon river (Davidson et al., 2012; Espinoza Villar
et al., 2009; Kitoh et al., 2011; Marengo et al., 2011; Zeng et al., 2008), the Yangtze river (Changjiang river;
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Wei et al., 2014; Xu et al., 2007, 2010; Zhang et al., 2014), the Mississippi river (Massei et al., 2011; Salas et al.,
2011; Tootle et al., 2005; Twine et al., 2005), the Mekong river (Cook et al., 2012; Costa‐Cabral et al., 2008;
Fan & He, 2015; Lutz et al., 2014), the Ob river (Shiklomanov et al., 2007; Shiklomanov & Lammers,
2014; Surazakov et al., 2007), and so forth.

Nevertheless, existing research has mostly focused on streamflow within individual rivers, and the relation-
ships assessed have been mainly limited to two variables (e.g., Marengo, Tomasella, Alves, et al., 2011; Salas
et al., 2011; Shiklomanov et al., 2007; Zeng et al., 2008; Zhang et al., 2014). A comprehensive study of the
world's large rivers will thus contribute to a better understanding of global hydrology. Hydrological pro-
cesses are intricate and are usually influenced by multiple factors. Measuring the effect of a single factor
(such as precipitation) alone will not fully capture all the features of the processes. Thus, it is essential to
study multivariable coherence to better reveal the salient features of the underlying processes at specific
temporal scales.

Several methods can be used to detect multivariate relationships, for example, multiple spectral coherence
(Si, 2008), a combination of multivariate empirical mode decomposition and the squared multiple correla-
tion coefficient (MCCmemd; Hu & Si, 2013; She et al., 2016), and trivariate cross‐wavelet spectral analysis
(Mihanović et al., 2009). However, multiple spectral coherence requires a stationary data series, which is rare
in hydrology (Hu & Si, 2016) since hydrometeorological signals arise from physical processes that operate
over a large range of scales varying from 1 day to several decades (Yu et al., 2015). With regard to
MCCmemd, the total variance in the original series typically does not equal the sum of the variances of the
different components, which may lead to false results (Hu & Si, 2016). Furthermore, multivariate relation-
ships in hydrology are most likely to be transient and inhomogeneous. Scale‐ and/or location‐dependent
information are not available with the above multivariate methods (Hu & Si, 2016). Trivariate cross‐wavelet
spectral analysis is only applicable to two orthogonal predictor variables, which limits its applicability in the
geosciences where there are commonlymore than two predictor variables and where the variables are often -
cross‐correlated.

As the traditional multivariate methods fail to capture scale‐specific, localized information and ignore the
correlations between predictor variables, these methodsmay identify redundant predictor variables and thus
prevent us from finding the most efficient way to explain the variations in the response variable (Hu et al.,
2017). To overcome the disadvantages of the existing multivariate methods, Hu and Si (2016) developedmul-
tiple wavelet coherence (MWC). MWC can untangle a range of multivariate relationships: It is able to iden-
tify spatial or temporal scale multivariate relationships, and it can be used to determine the proportion of the
variance associated with a response variable that is explained by predictor variables, at specific spatial or
temporal scales. Hu et al. (2017) used bivariate wavelet coherency and MWC to explore the spatial scale‐
and location‐dependent multivariate relationships between soil water content and environmental factors
in a hummocky landscape in North America. Their study showed that MWC is an effective method for
untangling the complex spatial and temporal variability associated with multiple controlling factors at mul-
tiple scales and led to an improved understanding of the underlying hydrological processes.

MWC is therefore conducive to proper characterization of the temporal scale‐specific multivariate relation-
ships between global streamflow and predicting factors. A good understanding of these relationships is
important for optimizing the variables used in temporal scale‐dependent predictions of global streamflow.
Specifically, it is important in global climate modeling to determine the dominant factors influencing
streamflow in order to be able to project realistic and meaningful changes in streamflow. Existing large com-
plex system models have not been able to fully simulate global streamflow. Clarifying the most prominent
factors influencing global river streamflow will improve the accuracy of model simulations. Here we present
a systematic method for isolating the most important factor combinations, which is a crucial first step in cli-
mate modeling involving hydrological responses. Before detecting the multivariate relationships, the domi-
nant modes of streamflow variability and how such modes vary with time can be determined by one‐
dimensional wavelet analysis (Torrence & Compo, 1998); the transient associations between the two nonsta-
tionary variables in both the time and frequency domains can be studied by bivariate wavelet transform (Yu
et al., 2015).

Themain aim of this study is to analyze the relationships between streamflow in large rivers across the world
and various meteorological factors and atmospheric drivers. First, the continuous wavelet transform (CWT)
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is applied to detect temporal patterns in the streamflow. Second, the wavelet transform coherence (WTC)
between streamflow and each predicting factor is calculated. Then, the MWC between streamflow and
every combination of two or more factors is determined. Finally, we compare the percentage of
streamflow variation explained by each factor to identify the dominant factors.

2. Data
2.1. Streamflow Data

Delineating the teleconnections between streamflow and ocean signals ideally requires a 50‐ to 100‐year
streamflow record that covers the time span of short‐term ocean signals such as the NAO or ENSO and
longer cycles such as the PDO. Unfortunately, of the 925 rivers that discharge directly to the ocean, as listed
in the Dai and Trenberth Global River Flow and Continental Discharge Dataset, and of the ~650 rivers listed
in the Global Runoff Data Centre (GRDC), only a few records span the entire twentieth century. Therefore,
we chose 16 large rivers in the world that have full records spanning from ~60 to ~110 years in length.

The streamflow data were obtained from the Dai and Trenberth Global River Flow and Continental
Discharge Dataset (http://www.cgd.ucar.edu/cas/catalog/surface/dai‐runoff/index.html) and from the
Global Runoff Data Centre (http://www.bafg.de/GRDC/EN/Home/homepage_node.html). Dai (2016)
found that the basin‐averaged water‐year (October–September) mean Palmer Drought Severity Index, pre-
cipitation, and model simulated runoff (from Dai et al., 2009, for 1948–2004 only) were often highly corre-
lated with observed streamflow (with correlation coefficient r ≈ 0.4–0.9); thus, he used one of these (the
one with the highest r) to fill in data gaps in the water‐year streamflow data series through linear regression.
We used monthly observed streamflow data ranging from 1900 to 2014. After data filing, streamflow records
were incomplete for many rivers. We therefore checked the data and excluded rivers that had more than 1%
missing values. Ultimately, we used data from 16 large rivers with records spanning from ~60 to ~110 years
(Table 1).

2.2. Meteorological Factors and Ocean Signals

The AO index is calculated as the projection of monthly mean 1,000‐mb height anomalies onto the first
empirical orthogonal function mode poleward of 20°N, using reconstructed data from the twentieth century.
The NAO is traditionally defined as the normalized pressure difference between a station on the Azores and
one on Iceland. The Niño 3.4 index and the SOI are representative indexes for the ENSO. The Niño 3.4 index
is the area‐averaged SST from 5°S–5°N and 170–120°W over the Pacific (Trenberth, 1997). The SOI is defined
as the normalized pressure difference between Tahiti and Darwin. The PDO is calculated frommonthly SST
anomalies poleward of 20°N in the Pacific basin. The DMI is the intensity of the Indian Ocean Dipole,

Table 1
River Information

River Station Country Period Length (km) Length rankinga

Amazon Obidos Brazil 1928–2013 6,400 2
Yangtze Datong China 1900–2016 6,300 3
Mississippi Vicksburg United States 1928–2013 5,900 4
Ob Salekhard Russia 1930–2010 5,400 6
Mekong Timbues Vietnam 1923–2012 4,800 7
Congo Kinshasa Congo 1903–2010 4,700 9
Lena Kusur Russia 1934–2011 4,400 10
Amur Komsomolsk Russia 1900–2006 4,400 11
Mackenzie Arctic Red Canada 1943–2013 4,200 12
Yenisei Igarka Russia 1936–2011 4,100 13
St. Lawrence Cornwall ON Canada 1900–2013 4,000 14
Niger Lokoja Nigeria 1915–2012 4,000 15
Yukon Pilot Stn United States 1956–2013 3,700 16
Danube Ceatal Izmail Romania 1900–2010 2,900 21
Tocantins Tucurui Brazil 1955–2014 2,700 24
Nelson u/s Bladder Canada 1915–2011 2,700 25

aLength Ranking from Milliman and Farnsworth (2011)
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represented by an anomalous SST gradient between the western equatorial Indian Ocean (50–70°E and
10°S–10°N) and the southeastern equatorial Indian Ocean (90–110°E and 10°S–0°N). Monthly AO, NAO,
Niño 3.4, SOI, DMI, and PDO signals were taken from the Earth System Research Laboratory from the
National Oceanic and Atmosphere Administration (http://www.esrl.noaa.gov/psd/).

Monthly meteorological factors including mean temperature (TMP), total precipitation (PRE), potential eva-
potranspiration (PET), and the number of rainy days (WET) are calculated from high‐resolution gridded
data sets on a 0.5° × 0.5° grid in an area average over the upstream catchment and were obtained from
the Climatic Research Unit (http://www.cru.uea.ac.uk/data/). All the meteorological factors and ocean sig-
nals cover the period January 1901 to December 2014.

3. Methods

The bivariate coherence and MWC between streamflow and the meteorological factors/ocean signals were
calculated using WTC and MWC. Before the WTC and MWC can be calculated, it is necessary to first calcu-
late the CWT.

3.1. The CWT

For a time series xj of length N with equal sample spacing δt, the CWT wi(s) at time ti = iδt and scale s can be
interpreted as an enhanced version of the discrete Fourier transformation F(ω) = ∑jxj exp (iωtj) (Kaiser,
1994). The difference is that the periodic exponential exp(iωtj) is substituted by a wavelet Ψ(tj − ti, s)
(Gedalof et al., 2004), which is a function with zero mean and localized in both time and frequency space
(Grinsted et al., 2004). The wavelet function can be stretched or contracted by varying the wavelet scale s
as well as translated by changing the localized time index ti. The wavelet is analogous to a band‐pass filter
applied to the time series.

The time series can thus be decomposed dependent on time and scale (Maraun & Kurths, 2004):

Wi sð Þ ¼ ∑N−1
j¼0 xjc sð ÞΨ0

* tj− ti
s

� �
; (1)

where * indicates the complex conjugate, and c sð Þ ¼
ffiffiffi
δt
s

q
is the normalization factor that results in Ψ having

unit energy. Wavelet power is defined as |Wi(s)|
2.

Because most practical time series are not cyclical, artifactual edge effects exist. The cone of influence (COI)
is the region of the wavelet spectrum in which edge effects cannot be ignored and is defined as the e‐folding
time for the autocorrelation of wavelet power at each scale (Torrence & Compo, 1998).

The significance level of the wavelet spectrum is analyzed against red noise, which is an appropriate random
background spectrum for many geophysical phenomena and which can be modeled as a univariate lag‐1
autoregressive process (Torrence & Compo, 1998). A significance level of p < 0.05 is used to evaluate the sta-
tistical significance of the results.

The Morlet wavelet is a nonorthogonal, complex function and is a good choice for achieving a balance
between time and frequency. It is defined as

ψ0 ηð Þ ¼ π
−1=4eiω0ηe−

1
2η

2
; (2)

where ω0 = 6 is dimensionless frequency, which provides a good balance between time and frequency loca-
lization, and η is dimensionless time (Grinsted et al., 2004; Torrence & Compo, 1998). Additional details
about the CWT are given in Grinsted et al. (2004).

3.2. WTC

WTC is a correlation coefficient localized in time and frequency space, which is used to quantify the degree
of linear relationship between two nonstationary series in the time and frequency domains (Cazelles et al.,
2008). Given time series X and Y, with wavelet transforms Wx

i sð Þ and Wy
i sð Þ, the wavelet coherence can be

defined according to Torrence and Webster (1998) as
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R2
n ¼ S s−1WXY

i sð Þ� ��� ��2
S s−1 WX

i sð Þ�� ��2� 	
·S s−1 WY

i sð Þ�� ��2� 	 ; (3)

in which S is a smoothing operator defined by the wavelet type used and

WXY
i sð Þ ¼ WX

i sð Þ·WY
i * sð Þ; (4)

where * denotes the complex conjugate. R2
n takes a value between 0 and 1, where 0 indicates no correlation

between the two time series and 1 indicates that the two time series are perfectly correlated with each other.
The WTC reveals regions in time‐frequency space where the two time series covary but do not necessarily
have high power (Keener et al., 2010). In the present work, confidence levels were assessed against red‐noise
backgrounds. Monte Carlo methods were adopted to estimate the statistical significance of the wavelet
coherence; the significance level for each scale was calculated solely from values outside the COI. A detailed
description of the calculation of WTCs is provided by Grinsted et al. (2004), who note that the desirable fea-
tures of WTCs come at the cost of slightly reduced localization in time‐frequency space.

3.3. MWC

Assuming a response variable Y and multiple predictor variables X (X = {X1, X2, …, Xq}), the MWC at scale s
and location τ, ρ2m s; τð Þ, can be written as

ρ2m s; τð Þ ¼
↔
W

Y ;X s; τð Þ↔
W

X;X s; τð Þ−1↔
W

Y ;X s; τð Þ*

↔
W

Y ;Y s; τð Þ ; (5)

where↔
W

Y ;X s; τð Þ is the matrix of the smoothed cross‐wavelet power spectra between response variable Y and
predictor variables X;↔

W

X ;X s; τð Þ is the matrix of the smoothed auto‐ and cross‐wavelet power spectra among
multiple predictor variables X; ↔

W

Y ;Y s; τð Þ is the smoothed wavelet power spectrum of response variable Y;
and ↔

W

Y ;X s; τð Þ* is the complex conjugate of ↔
W

Y ;X s; τð Þ (Hu & Si, 2016).

The wavelet phase between a response variable (Y) and a predictor variable (X1) is

ϕ s; τð Þ ¼ tan−1 Im ↔
W

Y ;X1 s; τð Þ
� �� �

=Re↔
W

Y ;X1 s; τð Þ; (6)

where Im and Re denote the imaginary and real parts of ↔
W

Y ;X s; τð Þ, respectively.
For both the bivariate wavelet coherence and the MWC, the 95% significance level was calculated using the
Monte Carlo method (Grinsted et al., 2004; Hu & Si, 2016).

3.4. Factor Identifying

The ability of different meteorological factors and ocean signals (or their combinations) to explain stream-
flow variation at all scales was assessed by measuring the average coherence (WTC/MWC) and the percent
area of significant coherence (PASC) relative to the wavelet scale‐location domain (outside the COI; Hu & Si,
2016). A greater average coherence with larger PASC indicates that more of the streamflow variation is
explained by a particular predictor variable case. We focused on all scales of streamflow variation so that
we could identify the factors underlying the variations in streamflow. Sometimes, the average coherence
increases with an increased number of independent variables, but the PASC does not necessarily increase
(Hu & Si, 2016). Statistically, an increased PASC indicates that there is a significant increase in the stream-
flow variations that can be explained at the 95% significant level. From a practical point of view, an addi-
tional factor is considered to be significant when it results in an increase in the PASC of at least 5% (Hu
et al., 2017).

4. Results
4.1. Temporal Patterns of Streamflow

Figure 1 display the results obtained for the CWT applied to streamflow series for 16 large rivers in the world
(the results of 16 rivers are shown in two parts, and the following results are shown in similar ways). The
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thick black contours designate the 5% significance level against red noise, and the pale regions indicate the
COI, where edge effects may distort the results. Common features occurred in the streamflow wavelet
patterns. Significant annual oscillations (around 12 months) were found in all streamflow series over the

Figure 1. Continuous wavelet transforms for the 16 streamflow series. The period is measured in months. Thick contours denote 5% significance levels against red
noise. Pale regions denote the cone of influence where edge effects might distort the results. The color denotes the strength of wavelet power.
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study period. Although many rivers showed a continuous annual periodicity, other rivers displayed
intermittent breaks. The Mississippi and the Yenisei rivers showed a slight discontinuity in annual
periodicity, whereas the Congo, St. Lawrence, Danube, and Nelson rivers showed more frequent breaks in
annual periodicity. Some scattered significant periodicities were also revealed. Periodicities of around 4 to
6 months were found for the Yangtze, Mississippi, Ob, Congo, Lena, Amur, Mackenzie, Yenisei, St.
Lawrence, Yukon, Danube, and Nelson rivers. A strong periodicity of approximately 20–32 years was also
observed for the St. Lawrence river from the 1930s to the 1980s. The CWT also revealed a 3‐ to 4‐year oscilla-
tion in the Danube river during the 1920s and 1940s and in the Nelson river during the 1970s and 2000s.

4.2. Individual Factors Controlling Streamflow Variability

The effects of individual factors on variations in streamflow are summarized in Tables 2 and 3. To highlight
the most important variables for each river, the factor with the highest coherence is shown in bold, and the
ocean signal with the highest coherence is underlined. The mean coherence value at significant domains for
all rivers surpassed 0.8, which demonstrated high covariability between streamflows and meteorological
factors/ocean signals (Table 2). TMP was the dominant meteorological factor for many of the rivers: It
was the meteorological factor with the highest coherence for eight streamflow series. PRE and PET were
next in importance, with the highest coherence for four and three streamflow series, respectively. Ocean sig-
nals generally had less coherence with streamflow than the meteorological factors. Among the six ocean sig-
nals we studied, the PDO and the AO were the most common influencing signals, both accounting for the
highest variation coherence for five rivers.

Looking at the PASC (Table 3), meteorological factors make greater contributions than ocean signals to the
variation in streamflow in rivers. PRE was the dominant meteorological factor with the greatest value for 11
rivers. WET and PET were the dominant factors for three and two rivers, respectively. The highest PASC for
meteorological factors ranged from 30.1% to 69.4% across all rivers, with an average largest PASC of 51.5%.
When we considered the best individual factors to explain streamflow variations, PRE stood out since it was
in the top two for all 16 rivers. PREwas followed byWET (10 rivers) and PET (six rivers) and lastly TMP (zero
rivers). Ocean signals generally had lower PASC values than meteorological factors. Among the six ocean
signals, PDO was the most dominant, accounting for the highest PASC for eight rivers. Next in importance
were Niño 3.4 and the NAO, which both had for the highest PASC for three rivers. The DMI and the AO was
the dominant signal for one river. The highest PASC for ocean signals ranged from 5.1% to 15.1% across all
rivers, with an average largest PASC of 9.3%.

Table 2
Mean Wavelet Transform Coherence Between Streamflow and Individual Predicting Factors

River AO Niño3.4 PDO DMI NAO SOI PET PRE WET TMP

Amazon 0.799 0.802 0.806 0.803 0.773 0.816 0.895 0.880 0.890 0.868
Yangtze 0.791 0.782 0.777 0.772 0.788 0.772 0.860 0.896 0.874 0.893
Mississippi 0.791 0.792 0.811 0.813 0.772 0.789 0.843 0.852 0.837 0.852
Ob 0.785 0.783 0.794 0.774 0.775 0.779 0.879 0.874 0.836 0.920
Mekong 0.775 0.811 0.789 0.782 0.806 0.785 0.892 0.889 0.903 0.901
Congo 0.790 0.783 0.787 0.785 0.794 0.785 0.846 0.871 0.862 0.868
Lena 0.790 0.782 0.781 0.784 0.782 0.793 0.904 0.897 0.862 0.939
Amur 0.782 0.776 0.778 0.813 0.786 0.781 0.867 0.884 0.875 0.902
Mackenzie 0.768 0.773 0.782 0.772 0.774 0.804 0.902 0.868 0.859 0.927
Yenisei 0.775 0.775 0.785 0.795 0.777 0.793 0.891 0.888 0.864 0.944
St. Lawrence 0.802 0.786 0.796 0.795 0.776 0.776 0.835 0.819 0.795 0.843
Niger 0.778 0.773 0.795 0.781 0.775 0.759 0.894 0.895 0.900 0.904
Yukon 0.812 0.772 0.803 0.761 0.757 0.775 0.902 0.857 0.865 0.935
Danube 0.790 0.774 0.780 0.776 0.778 0.787 0.829 0.900 0.867 0.833
Tocantins 0.781 0.804 0.793 0.780 0.776 0.797 0.886 0.878 0.876 0.831
Nelson 0.797 0.783 0.801 0.766 0.781 0.778 0.838 0.837 0.829 0.831

Note. Values are the mean wavelet coherence at significant locations across all scales and times.
Entries in bold indicate the factor with the highest coherence. Entries underlined indicate the ocean signal with the highest coherence. AO = Arctic Oscillation;
PDO = Pacific Decadal Oscillation; DMI = Dipole Mode Index; NAO = North Atlantic Oscillation; SOI = Southern Oscillation Index; PET = potential evapo-
transpiration; PRE = total precipitation; WET = number of rainy days; TMP = mean temperature.
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Figure 2 depict the WTC results for streamflow and the single factor (all proved to be meteorological factors)
that best explains streamflow variations in each river. The strong coherence (red areas) and high PASC
(areas bounded by thick contours) are clear. Significant annual covariance prevailed during the entire study
period for 12 of the rivers (the Amazon, Yangtze, Ob, Mekong, Congo, Lena, Amur, Mackenzie, Yenisei,
Niger, Yukon, and Tocantins rivers). Among these, the Ob, Congo, Lena, Amur, Mackenzie, Yenisei, and
Yukon rivers had in‐phase (positive) correlations with their predicting factors. WET led the Amazon river
streamflow by about 90°, which means that streamflow lagged behind WET by around 3 months during
the entire study period. PRE led the Yangtze, Mekong, Niger, and Tocantins rivers by about 45° (approxi-
mately 1.5 months). For the Mississippi, St. Lawrence, Danube, and Nelson rivers, intermittent annual oscil-
lations were detected with complicated phase relationships. Strong semiannual oscillations were observed in
theWTC results for the Congo and Niger rivers, with PRE leading streamflow by about 90° (1.5 months), and
for the Yenisei river, with PET leading streamflow by about 315° (5.25 months).

Significant interannual covariance occurred in all rivers with varying phase differences. For most rivers,
meteorological factors either led streamflow series by about 45° (4–16 months) or were in‐phase at the inter-
annual level. The Yangtze, Mississippi, Ob, Lena, Amur, Danube, and Tocantins rivers had very high PASC
for interannual covariance. Decadal periodicity existed for almost all rivers, except the Mekong, Congo,
Mackenzie, and Tocantins rivers, where the PASC for decadal covariance was small. The decadal relation-
ships between streamflow and factors were generally in‐phase. However, PRE led streamflow in the Ob,
Congo, and St. Lawrence rivers by about 45° (1–2 years), Yenisei river streamflow and PETwere in antiphase
(about 5 years), and PET led the Nelson river streamflow by about 315° (about 9.5 years). Interdecadal oscil-
lations were detected in the Amazon, Mississippi, Amur, St. Lawrence, and Danube rivers. All interdecadal
oscillations showed approximately in‐phase relationships between streamflow and their single factor.

Figure 3 shows the WTC results for streamflow in individual rivers and the single ocean signal that best
explains streamflow variations in each river. Scattered annual periodicities with complicated phase relation-
ships were found for all rivers during the study period. Interannual oscillations (mainly 2–5 years) with an
almost antiphase relationship between streamflow and PDOwere observed for the Yangtze, Mississippi, and
Yukon rivers during the first half of the twentieth century. Similar interannual oscillations between stream-
flow and PDO were seen in the Mekong, Lena, Mackenzie, St. Lawrence, and Niger rivers in the second half
of the twentieth century. Interannual oscillations between streamflow and Niño 3.4 were found for the
Amazon, Yenisei, and Tocantins rivers, with Niño 3.4 leading streamflow by about 315° (1.5–4.5 years) dur-
ing the second half of the twentieth century. The Ob river and the DMI showed scattered interannual

Table 3
PASC (%) for the Wavelet Transform Coherence Between Streamflow and Individual Factors

River AO Niño3.4 PDO DMI NAO SOI PET PRE WET TMP

Amazon 7.47 15.08 10.91 8.98 5.48 13.79 32.61 42.98 47.51 26.26
Yangtze 7.25 5.98 9.78 3.97 6.02 3.46 42.34 69.39 48.38 23.67
Mississippi 5.27 4.50 8.84 5.27 5.87 4.10 34.16 55.76 48.49 24.33
Ob 5.08 3.72 4.65 5.12 4.57 3.93 52.47 54.58 48.53 21.86
Mekong 3.91 7.35 9.28 6.35 6.91 4.42 28.06 40.74 29.40 27.81
Congo 7.24 7.61 5.51 4.69 9.75 6.59 27.03 46.47 35.59 23.01
Lena 7.18 3.86 9.24 6.23 6.00 4.22 40.76 62.31 35.59 21.27
Amur 6.24 3.70 6.28 6.86 7.59 2.66 37.41 66.14 44.90 22.15
Mackenzie 4.39 7.44 7.59 4.09 6.71 8.68 43.55 48.38 43.12 25.30
Yenisei 4.50 8.11 5.32 5.82 3.69 9.02 42.01 40.38 23.23 20.41
St. Lawrence 6.62 8.80 8.92 7.01 7.41 8.23 25.79 34.54 17.31 19.34
Niger 6.33 5.52 7.26 7.13 5.11 2.39 41.04 61.97 60.09 36.46
Yukon 7.48 6.44 10.68 3.51 3.73 4.94 40.98 50.31 51.63 23.35
Danube 11.29 6.83 6.61 5.57 7.22 5.46 29.34 57.01 57.03 19.56
Tocantins 6.09 11.83 7.24 3.57 3.84 8.99 25.58 55.24 31.29 21.69
Nelson 5.01 4.44 3.21 6.87 7.90 5.70 30.11 27.89 18.93 18.11

Note. PASC refers to the percent area of significant coherence relative to the whole wavelet scale‐time domain at all locations at various scales (outside the cone of
influence). Entries in bold indicate the factor with the highest PASC. Entries underlined indicate the ocean signal with the highest PASC. AO = Arctic
Oscillation; PDO = Pacific Decadal Oscillation; DMI = Dipole Mode Index; NAO = North Atlantic Oscillation; SOI = Southern Oscillation Index;
PET = potential evapotranspiration; PRE = total precipitation; WET = number of rainy days; TMP = mean temperature.
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Figure 2. Wavelet transform coherence between streamflow series and meteorological factors. The period is measured in months. Each subplot shows the wavelet
transform coherence between streamflow in a single river and the individual meteorological factor that best explains streamflow variation in that river. Thick
contours denote 5% significance levels against red noise. Pale regions denote the cone of influence where edge effects might distort the results. Small arrows denote
the relative phase relationship (in‐phase, arrows point right; antiphase, arrows point left). The color denotes the strength of coherence. WET = number of rainy
days; PRE = total precipitation; PET = potential evapotranspiration.
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Figure 3. Wavelet transform coherence between streamflow series and ocean signals. The period is measured inmonths. Each subplot shows the wavelet transform
coherence between streamflow in a single river and the individual ocean signal that best explains streamflow variation in that river. Thick contours denote 5%
significance levels against red noise. Pale regions denote the cone of influence where edge effects might distort the results. Small arrows denote the relative phase
relationship (in‐phase, arrows point right; antiphase, arrows point left). The color denotes the strength of coherence. AO = Arctic Oscillation; PDO = Pacific
Decadal Oscillation; NAO = North Atlantic Oscillation; DMI = Dipole Mode Index.
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periodicities in the 1940s, 1960s, and 1990s with complicated phase angles. Scattered interannual oscillations
with the NAO existed for the Congo river mainly during the 1940s and 1960s, for the Amur river during the
last century, and for the Nelson river in the 1980s, all with complicated phase relationships. The Danube
river and the AO had interannual periodicities mainly during the period 1960–1980, also with complicated
phases. Decadal periodicity between streamflow and the PDO was observed for the Yangtze river from the
1920s to the 1960s, for the Mekong river in the 1990s, the Lena river in the 1990s, the St. Lawrence river
in the 1920s and 1990s, and the Yukon river in the 1970s and 1990s, again, all with complicated phase dif-
ferences. Almost antiphase decadal periodicity was observed between Niño 3.4 and streamflow in the
Amazon river in the 1970s–1980s and in the Yenisei river in the 1960s–1990s and 1990–2000. Niño 3.4 led
streamflow in the Tocantins river by about 315° (about 9.5 years) in decadal periodicity during the 1970s
to 1990s. NAO led streamflow in the Congo river by about 45° (about 1.25 year) in decadal periodicity during
the 1920s to 1950s. Anti‐phase decadal oscillations were observed between streamflow in the Nelson river
and the NAO between the 1970s and 1990s. Anti‐phase bidecadal oscillations were found between stream-
flow in the Amazon river and Niño 3.4 from the 1950s to the 1980s, between streamflow in the
Mississippi river and the PDO from the 1960s to the 1980s, between streamflow in the Congo river and
the NAO from the 1950s to the 1960s, and between streamflow in the St. Lawrence river and the PDO from
the 1930s to the 1980s.

4.3. Combined Factors Explaining Streamflow Variability

Table 4 summarizes the combinations of meteorological factors that optimally explain streamflow variations
(individual‐factor, plus two‐factor, and three‐factor combinations). The average MWC coherence value at
significant domains for all two‐factor combination cases was 0.94, higher than the average WTC (0.8).
Among all the two‐factor combinations, PRE and PET were the most common, being the best two‐factor
combination for explaining streamflow variation for 10 rivers (Table 4). WET and PET, WET and PRE,
and PRE and TMP were each the best two‐factor combination for two rivers. A comparison between the
two‐factor cases and individual‐factor cases showed that the mean coherence increased for all rivers when
two factors were combined. An increase in PASC occurred in 12 rivers (the Amazon, Mississippi, Ob,
Mekong, Congo, Amur, Mackenzie, Yenisei, St. Lawrence, Yukon, Danube, and Nelson rivers). Although
only the Danube river (11.6% increase) showed an increase that was more than 5% and considered signifi-
cant, the smaller increases in the PASC in the other rivers also indicate that additional factors result in an
increase in the amount of streamflow variation explained. In these 12 rivers, the small increases in PASC
with two combined factors (compared to the WTC) were due to oscillations with periodicity around

Table 4
Coherence Between Streamflow and Multiple Meteorological Factors

River Single factor WTC PASC(%) Two factors MWC PASC(%) Three factors MWC PASC(%)

Amazon WET 0.89 47.51 WET‐PET 0.94 48.31 WET‐PRE‐PET 0.98 43.03
Yangtze PRE 0.9 69.39 PRE‐PET 0.96 67.25 PRE –TMP –PET 0.98 64.8
Mississippi PRE 0.85 55.76 PRE‐TMP 0.94 58.54 PRE –TMP –PET 0.97 56.23
Ob PRE 0.87 54.58 PRE‐PET 0.94 58.45 PRE‐TMP‐PET 0.97 54.86
Mekong PRE 0.89 40.74 PRE‐PET 0.95 43.44 WET‐PRE‐PET 0.97 42.68
Congo PRE 0.87 46.47 WET‐PRE 0.95 47.76 WET‐PRE‐PET 0.98 48.79
Lena PRE 0.9 62.31 PRE‐PET 0.95 58.49 WET‐PRE‐PET 0.97 54.4
Amur PRE 0.88 66.14 PRE‐PET 0.95 67.24 PRE‐TMP‐PET 0.98 63.42
Mackenzie PRE 0.87 48.38 PRE‐PET 0.95 50.13 WET‐PRE‐PET 0.98 52.25
Yenisei PET 0.89 42.01 PRE‐PET 0.95 45.31 WET‐PRE‐PET 0.97 44.13
St. Lawrence PRE 0.82 34.54 PRE‐PET 0.93 39.48 PRE‐TMP‐PET 0.98 43.11
Niger PRE 0.9 61.97 WET‐PRE 0.96 60.59 WET‐PRE‐PET 0.98 57.64
Yukon WET 0.87 51.63 WET‐PET 0.95 52.73 WET‐PRE‐PET 0.98 52.12
Danube WET 0.87 57.03 PRE‐TMP 0.96 68.58 PRE‐TMP‐PET 0.97 70.15
Tocantins PRE 0.88 55.24 PRE‐PET 0.94 53.89 WET‐PRE‐PET 0.97 48.16
Nelson PET 0.84 30.11 PRE‐PET 0.93 30.79 WET‐TMP‐PET 0.97 27.37

Note. Entries in bold indicate the factor with the highest PASC for streamflow variations for each river. WTC = wavelet transform coherence; PASC = percent
area of significant coherence; MWC=multiple‐wavelet coherence; PRE = total precipitation; WET= number of rainy days; PET = potential evapotranspiration;
TMP = mean temperature.
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4–8 months (Figures 3 and 4). The combination of two factors explained a greater amount of streamflow var-
iation at this periodicity than any single factor, and the additional factor was not correlated with the previous
single factor at oscillations around 4–8 months.

The significant increase in PASC in the Danube river with two factors (compared to the WTC) was due to
oscillations with periodicity around 5 years. Both PRE and TMP explained a certain amount of stream-
flow variation, and they were not correlated at oscillations around this periodicity (Figure 4). Another
six rivers showed a decrease in PASC with two factors, which may be attributed to the simultaneously
increased threshold for statistical significance threshold when an additional factor is added (Ng &
Chan, 2012). Furthermore, most areas with significant correlation between streamflow and the additional
factor were located within the area that already showed significant coherence for the best
individual factor.

Table 5 and Figure 5 summarize the combinations of meteorological factors and ocean signals that opti-
mally explain streamflow variations. Among all the combinations, PRE formed the most common opti-
mal combination with ocean signals for explaining variations in streamflow. However, the PASC
increased with an additional factor only for the Mekong river (an increase of 1.57% after adding Niño
3.4 compared with PRE alone). Similar to above, part of the reason for the lack of PASC expansion
was that most areas with significant correlation between streamflow and the additional ocean signals
were located within the area that already showed significant coherence for the best individual
meteorological factor.

Likewise, when there were three predictor variables in the MWC analysis, all coherences further
increased to nearly 1 (Table 4 and Figure 6). However, the PASC decreased for 12 rivers. Only the
Congo, Mackenzie, St. Lawrence, and Danube rivers showed increases in the PASC when taking three
predictor variables, and none of these increases was statistically significant (Table 4). The main reason
for the disagreement in the changes of coherence and PASC results was that the additional variance
explained by a third factor at a particular periodicity and time was already accounted for by the first
two factors. The contribution from some factors was weakened by overlapping effects because of the col-
linearity among factors. Therefore, only an additional factor that can independently explain a fair amount
of additional streamflow variability would make a significant contribution (Hu et al., 2017). Furthermore,
as described above, the PASC threshold for statistical significance increases when additional factors are
added (Ng & Chan, 2012). The increased PASCs for the Congo, Mackenzie, St. Lawrence, and Danube
rivers (as compared to the PASCs with two predictors) were due to oscillations with periodicities around
4–8 months (Figures 4 and 6). For these rivers, the combination of three factors explained a fair amount
of streamflow variation, and the third additional factor was not correlated with the previous two factors at
oscillations with periodicities of 4–8 months.

To summarize, we conducted a comparison of the coherence between streamflow and one factor, two fac-
tors, or three factors for 16 of the large rivers in the world: The optimal predictor(s) for each river are high-
lighted in bold in Table 4.

5. Discussion

Only an additional factor that can independently account for a significant amount of streamflow variability
will contribute significantly to explaining variations in streamflow (Hu et al., 2017). The variance that is
explained by additional factors at any particular periodicity and time may be already accounted for by the
existing factors. In our study, the contribution of additional factors may be weakened by overlapping effects
because of collinearity among the previous and additional factors. Therefore, the best predictor(s) of stream-
flow differed from river to river, varying from an individual factor to a combination of two or three factors.

For a river basin, the runoff can be calculated as

R ¼ PRE−ET–storage; (7)

where R is total runoff (including surface runoff and subsurface drainage), PRE is precipitation, ET is eva-
potranspiration, and storage represents temporary reservoirs of water such as snow stored at the surface
or soil moisture within the soil column (Twine et al., 2004). Storage is negligible at the annual time scale;
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Figure 4. Two‐factor multiple wavelet coherence. The period is measured in months. Each subplot shows the multiple wavelet coherence between streamflow in a
single river and the best combination of two factors. Thick contours denote 5% significance levels against red noise. Pale regions denote the cone of influence
where edge effects might distort the results. The color denotes the strength of coherence. WET = number of rainy days; PRE = total precipitation; PET = potential
evapotranspiration; TMP = mean temperature.
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thus, runoff is closely correlated with PRE and ET. ET is closely correlated
with PET. It is therefore not surprising that PET and PRE or/and WET
were the best predictors of streamflow variation for many rivers.

At low latitudes, strong radiative forcing results in high PET, which can
have a big impact on streamflow. TheWET‐PET combination was the best
predictor of streamflow variation for the Amazon river. However, areas
with significant correlation between streamflow and other factors may
have been contained within areas where streamflow and WET‐PET had
significant coherence. Marengo (2009) detected multidecadal time‐scale
variations in rainfall and river flow time series in the period 1929–1998,
including the relatively wet period from the late 1950s to the mid‐1970s
in the northern Amazon. Previous studies on the Amazon river have
mainly focused on PRE rather than WET. Our results showed that
Amazon streamflow was more correlated with WET than PRE.
According to Van der Ent et al. (2010), the Río de la Plata basin depends
on evaporation from the Amazon forest for 70% of its water resources.
Their estimate of the fraction of evaporated water that is recycled within
the same Amazon region was 48%. It therefore makes sense that WET‐
PET was the best predictor of streamflow variation for the Amazon river
in our study (Figure 4). Many previous papers have studied the relation-
ships between Amazon streamflow and ocean signals such as the ENSO,
PDO, AO, NAO, and the Atlantic multidecadal oscillation (AMO;

Marengo, 2009; Marengo et al., 2011; Davidson et al., 2012; Gloor et al., 2013; Espinoza et al., 2014). Our
results showed that the ENSO was the dominant ocean signal involved in variations in Amazon streamflow.
The interannual coherence revealed in theWTC between Amazon streamflow and Niño3.4 (Figure 3) can be
attributed to the fact that interannual rainfall variability in the Amazon basin partially depends on the
ENSO. In particular, below‐normal rainfall has been recorded in the north and northeast of the Amazon
basin during El Niño events (warm ENSO phases), whereas excess rainfall has been recorded during La
Niña events (cold ENSO phases). This pattern results in high flood levels for the Amazon river during La
Niña events and low flood levels during El Niño events. (Davidson et al., 2012; Espinoza Villar et al.,
2009; Sombroek, 2001). In our study, WET combined with Niño 3.4 was the best combination of meteorolo-
gical factor and ocean signal for the Amazon river (Figure 5). When the ENSO effect was superimposed over
a 28‐year cycle of variation in precipitation, severe floods and droughts became prevalent (Davidson et al.,
2012). The biggest floods occurred when the La Niña phase coincided with the wet phase in the 28‐year
cycle, which occurred in the mid‐1970s. The worst droughts occurred when the El Niño phase coincided
with the dry phase of the longer‐term cycle, for example, during the 1992 drought (Davidson et al., 2012).

Precipitation was the best predictor for the Tocantins river, and additional factors did not increase the area of
coherence. Monthly precipitation has a high level of agreement with river discharge (R = 0.84) at a 1‐month
time lag (Coe et al., 2011). Costa et al. (2003) also showed that about half of the increment in discharge can be
explained by an increase in precipitation. Our results suggested Niño3.4 and AO combined with PRE were
the best combinations of meteorological factor and ocean signal for explaining variation in streamflow in the
Tocantins river. According to Foley et al. (2002), the Tocantins river was drier and warmer than normal dur-
ing El Niño phases and wetter and cooler during La Niña phases. Little research has focused on the AO and
streamflow in the Tocantins river. Our results may provide a new avenue for future study.

PRE‐TMP was the best combination of predictors for streamflow in the Mississippi river. It has previously
been reported that increased regional precipitation is the dominant driver of positive runoff trends in the
upper Mississippi river basin (Frans et al., 2013). Similarly, increased precipitation has led to an upward
trend in streamflow in the Mississippi river basin since the 1940s (Zhang & Schilling, 2006). Temperature
can affect both evapotranspiration and snowmelt: Both contribute to changes in soil water and thus regulate
streamflow (Lu et al., 2010). The PDOwas the ocean signal that best explained variation in streamflow in the
Mississippi, and PRE‐PDO was the best meteorological factor‐ocean signal combination. This is consistent
with the fact that Mississippi river flow has been reported to be significantly lower during the PDO cold
phase than during the PDO warm phase (Tootle et al., 2005; Tootle & Piechota, 2006; Sanchez‐Rubio

Table 5
Coherence Between Streamflow and Meteorological Factor‐Ocean Signal
Combinations

River Combined factors MWC PASC (%)

Amazon WET‐Niño3.4 0.95 43.83
Yangtze PRE‐AO 0.95 64.67
Mississippi PRE‐PDO 0.94 50.43
Ob PRE‐Niño3.4 0.94 49.18
Mekong PRE‐ Niño3.4 0.95 42.31
Congo PRE‐NAO 0.94 42.36
Lena PRE‐NAO 0.95 55.83
Amur PRE‐NAO 0.94 60.55
Mackenzie PRE‐PDO 0.94 42.5
Yenisei PET‐AO 0.95 38.14
St. Lawrence PRE‐PDO 0.92 32.18
Niger WET‐AO 0.95 57.45
Yukon WET‐PDO 0.94 45.08
Danube PRE‐AO 0.95 56.4
Tocantins PRE‐AO 0.94 49.74
Nelson PRE‐Niño3.4 0.93 29.32

Note. PASC = percent area of significant coherence; MWC = multiple‐
wavelet coherence; WET = number of rainy days; PRE = total precipita-
tion; AO = Arctic Oscillation; PDO = Pacific Decadal Oscillation; NAO =
North Atlantic Oscillation; PET = potential evapotranspiration.
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Figure 5. Meteorological factor‐ocean signal combinationmultiple wavelet coherence. The period is measured inmonths. Each subplot shows themultiple wavelet
coherence between streamflow in a single river and the best meteorological factor‐ocean signal combination. Thick contours denote 5% significance levels
against red noise. Pale regions denote the cone of influence where edge effects might distort the results. The color denotes the strength of coherence. .
WET = number of rainy days; PRE = total precipitation; PET = potential evapotranspiration; AO = Arctic Oscillation; PDO = Pacific Decadal Oscillation;
NAO = North Atlantic Oscillation.
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Figure 6. Three‐factor multiple wavelet coherence. The period is measured in months. Each subplot shows the multiple wavelet coherence between streamflow in
a single river and the best combination of three factors. Thick contours denote 5% significance levels against red noise. Pale regions denote the cone of
influence where edge effects might distort the results. The color denotes the strength of coherence. WET = number of rainy days; PRE = total precipitation;
PET = potential evapotranspiration; TMP = mean temperature.
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et al., 2011; Mallakpour & Villarini, 2016). In addition, long‐termMississippi river flow variability is primar-
ily associated with the interdecadal PDO (Sanchez‐Rubio et al., 2011).

PRE‐PET was the best predictor for the Mekong river. Much of the streamflow variability in the Mekong
river basin results from the monsoonal precipitation regime and terrain topography. There are pronounced
relationships between streamflow and annual and wet‐season precipitation, especially for the upstream
region of the Lancang‐Mekong river, for which the percent variance explained was more than 65% in both
cases (Fan & He, 2015). Although streamflow variability in the dry season is dominated by snowmelt, a sig-
nificant portion is explained by soil moisture, and soil moisture dynamics are controlled by evapotranspira-
tion via water extraction by deep roots (mostly in forested areas; Costa‐Cabral et al., 2008). In our study, the
PDO and Niño3.4 combined with PRE explained more than 40% of streamflow variation for the Mekong
river. Delgado et al. (2012) reported a relationship between the variance of the Western North‐Pacific mon-
soon index and PDO intensity that has important implications for hazardous floods in the Mekong area. The
ENSO also has a large effect on Mekong river streamflow: Precipitation and discharge decreased, the annual
flood period was shorter during El Niño phases, and the opposite occurred during La Niña phases (Räsänen
& Kummu, 2013).

WET‐PRE‐PET was the best predictor for the Congo river. In regions similar to the Congo river, the higher
availability of soil moisture under global warming conditions enhances the moisture‐evapotranspiration‐
precipitation loop (Saeed et al., 2013), which in turn greatly impacts streamflow. After anomalously rainy
seasons in early 2003 and 2005, about 60–70% of precipitation went to streamflow and evapotranspiration
in the Cong basin (Crowley et al., 2006). Our results indicate that PRE‐PET alone was not enough to account
for the variations in streamflow and that adding WET contributes to the amount explained. Our results sug-
gest that NAO is the ocean signal with the most influence on variations in Congo river streamflow. This is
supported by Todd and Washington (2004) who found a strong negative association between the NAO
and Congo river discharge during the boreal winter/spring period at both interannual and multiannual time
scales. Despite its equatorial location, streamflow in the Congo river in boreal winter/spring appeared more
sensitive to influences from the North Atlantic than from the ENSO.

PREwas the best predictor for the Niger river. This is supported by Aich et al. (2014), who found that stream-
flow in the Niger river was highly sensitive to changes in PRE: A 25% increase in annual precipitation
resulted in a 90% increase in modeled discharge, whereas a similar reduction in precipitation caused the
annual discharge to decrease by almost 50%. Furthermore, a correlation analysis by Murray et al. (2012)
revealed that streamflow changes in the Niger river are tightly linked to changes in rainfall (Pearson correla-
tion coefficient R = 0.53). Applying a similar analysis, Roudier and Ducharne (2014) found a similar correla-
tion between rainfall and streamflow for the Niger river (R = 0.49) and a smaller correlation between
streamflow and changes in PET.

PRE was the best predictor for the Yangtze river. Previous analysis has indicated that runoff trends for the
Yangtze river respond closely to precipitation trends (Zhang et al., 2005). Precipitation was significantly cor-
related with discharge, explaining 80% of the variance in a multiple correlation analysis (Chen et al., 2014).
S. L. Yang et al. (2010) found common interannual, decadal, and multidecadal intervals between discharge
and precipitation in the Yangtze river, consistent with our results. Our WTC analysis of the relationships
between streamflow and ocean signals revealed that the PDO was the ocean signal that best explained var-
iations in Yangtze streamflow. According to X. Zhang et al. (2014), the positive phase of the PDO could lead
to reduced precipitation, consequently affecting the long‐term water discharge of the Yangtze river.
Furthermore, water discharge from the Yangtze river consists of cycles that are closely related to the typical
PDO cycles (i.e., 15‐ to 20‐year cycles, on average; Zhang et al., 1997). However, a combination of PRE‐AO
was the best predictor for the Yangtze river among the meteorological factor‐ocean signal combinations,
which may be attributed to the strong correlation between the AO and summer rainfall in the region.
According to Gong et al. (2002), summer rainfall along the Yangtze river was strongly correlated with the
May AO, with a correlation coefficient of −0.39, significant above the 99% confidence level. Rainfall over
the Yangtze river decreased by about 3–9% with a strengthening of the May AO index by one
standard deviation.

PRE‐TMP‐PET was the best predictor for the Danube river. The source of the Danube is in the Alps, and the
portions of the Danube streamflow originating from icemelt, snowmelt, and rain varied from approximately
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33% each in the upstream section to about 2%, 75%, and 25%, respectively, in the downstream section. Since
temperature decreases with increasing altitude, large amounts of precipitation fell in the form of snow at
higher elevations, and release from this temporary storage is strongly temperature dependent.
Furthermore, the lower temperatures and presence of snow at higher elevations weakens evaporation and
thus favors higher specific runoff (Weber et al., 2010). This is supported by Szolgayova et al. (2014) who
found that the precipitation‐discharge wavelet coherence spectrum showed significant coherence for most
periods at almost all times with cross‐wavelet spectra and wavelet coherence. Previous studies on Danube
streamflow and ocean signals mainly focused on the NAO and the ENSO. Our results showed that the AO
accounted for a greater part of streamflow variation. This is in agreement with Ionita et al. (2015), who found
that the leading mode of dryness/wetness variability was strongly related to the different phases of the AO.

PRE‐TMP‐PET was the best predictor for the St. Lawrence river. The St. Lawrence river area is characterized
by harsh winters, and winter streamflow is mainly derived from aquifers that are recharged in the spring,
during snowmelt, and in the fall, when evapotranspiration is subdued. Winter precipitation has a significant
impact on spring streamflow, which is mainly fed by snowmelt. Spring streamflow accounts for at least half
of the annual streamflow in Quebec rivers, including the St. Lawrence river (Assani & Tardif, 2005). In some
catchments throughout Quebec, over 70% of annual infiltration takes place during snowmelt and over 60%
of aquifer water turns up as streamflow (Lavigne et al., 2010; Nastev et al., 2005). Thus, the percentage of
precipitation falling as either rain or snow directly affects water supplied from the snowpack in the spring
and the amplitude and timing of streamflow during the winter and spring (Hodgkins et al., 2003). Our results
showed that, individually, PRE, TMP, and PET could not fully account for variations in streamflow in the St.
Lawrence river but that the combination of PRE‐TMP‐PET is the best predictor.

At high latitudes, PET and PRE and/or WET tend to be important. Rivers at high latitudes exhibit PREmax-
imums in July and minimums in February and March. PRE‐WET tends to peak in autumn and be lowest in
summer (Serreze et al., 2002). The influence of PRE/WET and PET on streamflow varies for different rivers.
Reportedmeasurements of mean streamflow ratio (streamflow/PRE) varied for themajor Arctic‐flowing riv-
ers. Values for the Ob river ranged from 0.25 to 0.33, considerably lower than values for the Yenisey (0.47 to
0.54), Lena (0.46 to 0.61), Amur (0.38–0.67), and Yukon (0.7) rivers (Carey &Woo, 1999; Serreze et al., 2002;
Suzuki et al., 2006). Existing estimates for theMackenzie river were intermediate (0.30 to 0.46; Bowling et al.,
2000). These differences in streamflow ratio might derive from differences in PET for the different rivers,
with PET values being especially high for the Ob river. Generally, the streamflow ratio was consistent with
the high fraction of annual precipitation and snowmelt lost through evapotranspiration, especially in sum-
mer. A clear progression in January temperatures occurred from relatively mild conditions in the Ob
(−18.7 °C) to very cold conditions in the Lena (−35.0 °C), fostering stronger summer PET in the Ob river
and weaker summer PET in the Lena river. The number of snow‐free days was also much greater in the
Ob river, pointing to earlier and more prolonged warming of the soil, also contributing to high evapotran-
spiration rates. Furthermore, a larger part of the Ob and over 6% of the Mackenzie are characterized as wet-
lands, which contributes to the higher evapotranspiration for these rivers (Serreze et al., 2002). For large
domains in northern Eurasia, about 25% of July precipitation was associated with the recycling of water
vapor evapotranspirated within each domain (Serreze et al., 2002). Our findings for high‐latitude rivers
are consistent with the above results. We found that PRE‐PET was the best predictor for the Ob, Amur,
Yenisei, and Nelson rivers. WET‐PET was the best predictor for the Yukon river, indicating that future
Yukon streamflow studies may benefit from taking WET rather than PRE into consideration. For the
Mackenzie river, WET‐PRE‐PET was the best predictor. However, PRE was the best predictor for the
Lena river because of the low influence of PET for this river.

In summary, due to the multiple‐scale characteristics of streamflow and related environmental variables,
single factors can fail to capture the salient features of the underlying processes. The best predictors of
streamflow differed for different rivers, although all were either individual meteorological factors or combi-
nations of meteorological factors. This may be attributed to the fact that meteorological factors are directly
linked to streamflow whereas ocean signals influence streamflow indirectly via hydrologic/meteorological
processes. The most common predictors were PRE or/and WET combined with PET. For some rivers, a sin-
gle factor was sufficient to account for the variations in streamflow, but others required two or three factors
in combination. The differences between rivers arise from the discrepancies in their latitudes, radiative for-
cing, topography, vegetation coverage, hydrological processes, and so forth. Although the combined
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meteorological factor/ocean signal case is less efficient than combining two meteorological factors, the for-
mer may be favored when information about certain meteorological factors is unavailable. Furthermore, in
terms of operational practices for water resources, the predictability of some of the ocean signals may be
much higher than the dominant influencing factors (such as WET and PET), despite the ocean signals not
being the dominant factor. Therefore, secondary predictors with “good enough” coherence and high predict-
ability may actually be more useful for operational water resource planning that requires predictability sev-
eral months in advance. Our study has some limitations. We studied globally recognized environmental
variables. However, we did not take into account some region‐specific variables, such as the AMO. The
AMO is related to the multidecadal variability of many regional climates, including the North American
and European summer climate (Knight et al., 2006). During AMO warmings, much of the United States
experiences lower rainfall than normal; outflow from the Mississippi river varies by 10% between warm
and cool AMO phases (Enfield et al., 2001). Also, we did not assess combinations of four or more factors.
However, according to our results, there is a high chance that the PASC will decrease as more variables
are taken into consideration.

6. Conclusions

Temporal scale‐dependent multivariate relationships between streamflow and meteorological factors/ocean
signals in 16 of the world's large rivers were identified using WTC and MWC. Prior to the multivariate ana-
lysis, the CWT was used to detect temporal patterns in streamflow. The CWT results showed that significant
annual oscillations occurred in all streamflow series over the study period, either with continuous annual
periodicity or with intermittent breaks. Oscillations with periodicities of around 4 to 6 months were also
found in many rivers.

A comparison of the results from the WTC and MWC analyses indicated that streamflow variation could be
best explained by one, two, or three meteorological factors. To summarize, WET‐PET was the best predictor
of variation in streamflow for the Amazon and the Yukon rivers; PRE‐PET was the best predictor for the
Mekong, Ob, Amur, Yenisei, and Nelson rivers; PRE was the best predictor for the Tocantins, Niger,
Yangtze, and Lena rivers; PRE‐TMP was the best predictor for the Mississippi river; WET‐PRE‐PET was
the best predictor for the Congo and Mackenzie rivers; PRE‐TMP‐PET was the best predictor for the
Danube and St. Lawrence rivers. The combination of factors that best explained streamflow variations dif-
fered among the rivers, although PRE or WET either alone or in combination with other factors was a domi-
nant predictor for all rivers. The most common best predictor was PRE or/and WET combined with PET.
The differences in best predictor were due to differences in latitude, radiation forcing, terrain, vegetation
coverage, hydrological processes, and so on.

Our results are conducive to a better understanding of the trends in global river streamflow. The results
suggest that an efficient and promising way to predict streamflow at different time scales under changing
climate scenarios and changing atmospheric and oceanic conditions is to focus on the best predictor. Our
conclusions will also be valuable for planning and implementing operational strategies for the sustainable
use of available water resources. Limitations of this study include not incorporating more meteorological
factors and ocean signals and excluding four‐factor combinations. We did not include snow in our wavelet
analysis because of the lack of global data for snow depth/coverage/snow water equivalent during our study
period. However, the amount of snow is closely related to temperature, so some of the effects of snow may
have been accounted for indirectly by taking temperature into consideration. These limitations should be
addressed in future studies.
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